Zobrazeno 1 - 10
of 30 438
pro vyhledávání: '"A. Breuil"'
Autor:
Feng, Tony, Hung, Bao Le
The Breuil-M\'{e}zard Conjecture predicts the existence of hypothetical "Breuil-Mezard cycles" in the moduli space of mod $p$ Galois representations of $\mathrm{Gal}(\overline{\mathbb{Q}}_q/\mathbb{Q}_q)$ that should govern congruences between mod $p
Externí odkaz:
http://arxiv.org/abs/2310.07006
Autor:
Bartlett, Robin
For a split reductive group $G$ we realise identities in the Grothendieck group of $\widehat{G}$-representation in terms of cycle relations between certain closed subschemes inside the affine grassmannian. These closed subschemes are obtained as a de
Externí odkaz:
http://arxiv.org/abs/2305.06455
Autor:
Lee, Heejong
We construct a moduli stack of rank 4 symplectic projective \'etale $(\varphi,\Gamma)$-modules and prove its geometric properties for any prime $p>2$ and finite extension $K/\mathbf{Q}_p$. When $K/\mathbf{Q}_p$ is unramified, we adapt the theory of l
Externí odkaz:
http://arxiv.org/abs/2304.13879
Autor:
Qian, Zicheng
Let $p$ be prime number and $K$ be a $p$-adic field. We systematically compute the higher $\mathrm{Ext}$-groups between locally analytic generalized Steinberg representations (LAGS for short) of $\mathrm{GL}_n(K)$ via a new combinatorial treatment of
Externí odkaz:
http://arxiv.org/abs/2210.01381
We establish a geometrisation of the Breuil-M\'ezard conjecture for potentially Barsotti-Tate representations, as well as of the weight part of Serre's conjecture, for moduli stacks of two-dimensional mod p representations of the absolute Galois grou
Externí odkaz:
http://arxiv.org/abs/2207.05235
Autor:
García-Osuna, Vanessa
Publikováno v:
Tendencias del Mercado del Arte. dec2022, Issue 157, p27-31. 5p.
Autor:
Bartlett, Robin
We consider closed subschemes in the affine grassmannian obtained by degenerating $e$-fold products of flag varieties, embedded via a tuple of dominant cocharacters. For $G= \operatorname{GL}_2$, and cocharacters small relative to the characteristic,
Externí odkaz:
http://arxiv.org/abs/2108.04094
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sarkar, Mabud Ali, Shaikh, Absos Ali
In this paper, by assuming a faithful action of a finite flat $\mathbb{Z}_p$-algebra $\mathscr{R}$ on a $p$-divisible group $\mathcal{G}$ defined over the ring of $p$-adic integers $\mathscr{O}_K$, we construct a category of new Breuil-Kisin module $
Externí odkaz:
http://arxiv.org/abs/2103.11837
Autor:
Shaikh, Absos Ali, Sarkar, Mabud Ali
In the work we have considered Breuil-Kisin module over the ring of witt vectors $W(\kappa)$ over the residue field $\kappa$ of characteristic $p$ and a finite flat $\mathbb{Z}_p$-algebra $R$. Then considered Breuil-Kisin modules $M$ over the ring $W
Externí odkaz:
http://arxiv.org/abs/2002.00746