Zobrazeno 1 - 10
of 2 083
pro vyhledávání: '"A. Brahic"'
Autor:
Brahic, Olivier, Pasievitch, Dion
We discuss natural transformations in the context of Lie groupoids, and their infinitesimal counterpart. Our main result is an integration procedure that provides smooth natural transformations between Lie groupoid morphisms.
Externí odkaz:
http://arxiv.org/abs/1910.04505
Publikováno v:
SIAM J. Control Optim, 2004, 43 (2), pp.477 - 501
Motivated by a constrained minimization problem, it is studied the gradient flows with respect to Hessian Riemannian metrics induced by convex functions of Legendre type. The first result characterizes Hessian Riemannian structures on convex sets as
Externí odkaz:
http://arxiv.org/abs/1811.10331
Publikováno v:
In Forest Policy and Economics November 2022 144
Autor:
Brahic, Olivier, Zambon, Marco
We consider homotopy actions of a Lie algebroid on a graded manifold, defined as suitable $L_{\infty}$-algebra morphisms. On the "semi-direct product" we construct a homological vector field that projects to the Lie algebroid. Our main theorem states
Externí odkaz:
http://arxiv.org/abs/1708.06415
Autor:
Brahic, Michel
Publikováno v:
In New Scientist 13 November 2021 252(3360):48-50
Autor:
Ortiz, Cristian, Brahic, Olivier
Given a representation up to homotopy of a Lie algebroid on a 2-term complex of vector bundles, we define the corresponding holonomy as a strict 2-functor from a Weinstein path 2-groupoid to the gauge 2-groupoid of the underlying 2-term complex. We c
Externí odkaz:
http://arxiv.org/abs/1608.00664
Autor:
Brahic, Beverley Bie
Publikováno v:
The Poetry Ireland Review, 2019 Dec 01(129), 34-34.
Externí odkaz:
https://www.jstor.org/stable/26888265
Publikováno v:
Revue Forestière Française, Vol 73, Iss 2-3 (2022)
Si la forêt incarne la nature pour les Français, la notion de naturalité leur est beaucoup moins familière et leur semble relever du sauvage. Pourtant, certains signes montrent que ces représentations évoluent : les bois morts sont désormais t
Externí odkaz:
https://doaj.org/article/45649b9b774f41dc96e3c63768f16376
Autor:
Brahic, Olivier, Pasievitch, Dion
Publikováno v:
In Differential Geometry and its Applications August 2020 71
Autor:
Brahic, Olivier, Fernandes, Rui Loja
Publikováno v:
Pacific J. Math. 278 (2015) 325-367
Coupling Dirac structures are Dirac structures defined on the total space of a fibration, generalizing hamiltonian fibrations from symplectic geometry, where one replaces the symplectic structure on the fibers by a Poisson structure. We study the ass
Externí odkaz:
http://arxiv.org/abs/1409.7899