Zobrazeno 1 - 10
of 1 184
pro vyhledávání: '"A. Arzel"'
Autor:
Ribeiro, Lucas Grativol, Leonardon, Mathieu, Muller, Guillaume, Fresse, Virginie, Arzel, Matthieu
Publikováno v:
32nd European Signal Processing Conference EUSIPCO, Aug 2024, Lyon, France
Low-Rank Adaptation (LoRA) methods have gained popularity in efficient parameter fine-tuning of models containing hundreds of billions of parameters. In this work, instead, we demonstrate the application of LoRA methods to train small-vision models i
Externí odkaz:
http://arxiv.org/abs/2406.14082
Autor:
Ribeiro, Lucas Grativol, Gauthier, Lubin, Leonardon, Mathieu, Morlier, Jérémy, Lavrard-Meyer, Antoine, Muller, Guillaume, Fresse, Virginie, Arzel, Matthieu
Publikováno v:
ISCAS 2024 : IEEE International Symposium on Circuits and Systems, May 2024, Singapore, Singapore
This paper tackles the challenges of implementing few-shot learning on embedded systems, specifically FPGA SoCs, a vital approach for adapting to diverse classification tasks, especially when the costs of data acquisition or labeling prove to be proh
Externí odkaz:
http://arxiv.org/abs/2404.19354
Autor:
Ribeiro, Lucas Grativol, Leonardon, Mathieu, Muller, Guillaume, Fresse, Virginie, Arzel, Matthieu
Publikováno v:
IEEE 30th International Conference on Electronics, Circuits and Systems, Dec 2023, Istanbul, Turkey
Federated Learning (FL) is a promising distributed method for edge-level machine learning, particularly for privacysensitive applications such as those in military and medical domains, where client data cannot be shared or transferred to a cloud comp
Externí odkaz:
http://arxiv.org/abs/2310.14693
Autor:
Arzel, M.1, Chabert, M.2
Publikováno v:
SOFW Journal (English version). Oct2024, Vol. 150 Issue 10, p44-47. 4p.
Autor:
Tessier, Hugo, Gripon, Vincent, Léonardon, Mathieu, Arzel, Matthieu, Bertrand, David, Hannagan, Thomas
Deep neural networks are the state of the art in many computer vision tasks. Their deployment in the context of autonomous vehicles is of particular interest, since their limitations in terms of energy consumption prohibit the use of very large netwo
Externí odkaz:
http://arxiv.org/abs/2206.06255
Autor:
Tessier, Hugo, Gripon, Vincent, Léonardon, Mathieu, Arzel, Matthieu, Bertrand, David, Hannagan, Thomas
Structured pruning is a popular method to reduce the cost of convolutional neural networks, that are the state of the art in many computer vision tasks. However, depending on the architecture, pruning introduces dimensional discrepancies which preven
Externí odkaz:
http://arxiv.org/abs/2206.06247
Autor:
Lemesle, Prescillia, Frøyland, Sunniva H., Ask, Amalie, Zhang, Junjie, Ciesielski, Tomasz M., Asimakopoulos, Alexandros G., Noreikiene, Kristina, Wilson, Nora M., Sonne, Christian, Garbus, Svend Erik, Jaspers, Veerle L.B., Arzel, Céline
Publikováno v:
In Science of the Total Environment 15 December 2024 956
Autor:
Belhcen, Amal, Renaud, Adèle, Guillot-Deudon, Catherine, Arzel, Ludovic, Corraze, Benoit, Barreau, Nicolas, Jobic, Stéphane, Caldes, Maria Teresa
Publikováno v:
In Electrochimica Acta 20 January 2025 511
Autor:
Ask, Amalie V., Jaspers, Veerle L.B., Zhang, Junjie, Asimakopoulos, Alexandros G., Frøyland, Sunniva H., Jolkkonen, Juho, Prian, Wasique Z., Wilson, Nora M., Sonne, Christian, Hansen, Martin, Öst, Markus, Koivisto, Sanna, Eeva, Tapio, Vakili, Farshad S., Arzel, Céline
Publikováno v:
In Environmental Pollution 15 January 2025 365
Autor:
Arteaga, Gean C., Louarn, Guy, Ramos-Hernández, Andrea, Romero, Mario, Arzel, Ludovic, Bernède, Jean Christian, Saavedra-Olavarría, Jorge, Pérez, Edwin G., Maza, Julio R., Romero, Jonathan, Cattin, Linda
Publikováno v:
In Micro and Nanostructures May 2024 189