Zobrazeno 1 - 10
of 54 174
pro vyhledávání: '"A. Arimoto"'
By the seminal paper of Claude Shannon \cite{Shannon48}, the computation of the capacity of a discrete memoryless channel has been considered as one of the most important and fundamental problems in Information Theory. Nearly 50 years ago, Arimoto an
Externí odkaz:
http://arxiv.org/abs/2407.06013
Autor:
Hayashi, Masahito
We generalize the generalized Arimoto-Blahut algorithm to a general function defined over Bregman-divergence system. In existing methods, when linear constraints are imposed, each iteration needs to solve a convex minimization. Exploiting our obtaine
Externí odkaz:
http://arxiv.org/abs/2408.05454
Autor:
Dou, Yanan1 (AUTHOR) yanandou@stu.xidian.edu.cn, Liu, Yanqing2 (AUTHOR) lyq2017616@126.com, Niu, Xueyan3 (AUTHOR) niuxueyan3@huawei.com, Bai, Bo3 (AUTHOR) baibo8@huawei.com, Han, Wei3 (AUTHOR) harvey.hanwei@huawei.com, Geng, Yanlin1 (AUTHOR) ylgeng@xidian.edu.cn
Publikováno v:
Entropy. Mar2024, Vol. 26 Issue 3, p178. 27p.
The Sibson and Arimoto capacity, which are based on the Sibson and Arimoto mutual information (MI) of order {\alpha}, respectively, are well-known generalizations of the channel capacity C. In this study, we derive novel alternating optimization algo
Externí odkaz:
http://arxiv.org/abs/2401.14241
Autor:
Hayashi, Masahito, Liu, Geng
Publikováno v:
Quantum Science and Technology, 9, 045036 (2024)
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al. (IEEE Trans. IT, 67, 946 (2021)) to a function defined over a set of density matrices with linear constraints so that our algorithm can be applied to optimizations of quantum o
Externí odkaz:
http://arxiv.org/abs/2311.11188
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The Blahut-Arimoto algorithm is a well-known method to compute classical channel capacities and rate-distortion functions. Recent works have extended this algorithm to compute various quantum analogs of these quantities. In this paper, we show how th
Externí odkaz:
http://arxiv.org/abs/2306.04492
The Blahut-Arimoto (BA) algorithm has played a fundamental role in the numerical computation of rate-distortion (RD) functions. This algorithm possesses a desirable monotonic convergence property by alternatively minimizing its Lagrangian with a fixe
Externí odkaz:
http://arxiv.org/abs/2305.02650
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In [8] (Nakagawa, et.al., IEEE Trans. IT, 2021), we investigated the convergence speed of the Arimoto-Blahut algorithm. In [8], the convergence of the order $O(1/N)$ was analyzed by focusing on the second-order nonlinear recurrence formula consisting
Externí odkaz:
http://arxiv.org/abs/2209.04961