Zobrazeno 1 - 10
of 1 278
pro vyhledávání: '"A. Alazraki"'
Autor:
Alazraki, Lisa, Rei, Marek
External tools help large language models (LLMs) succeed at tasks where they would otherwise typically fail. In existing frameworks, LLMs learn tool use either by in-context demonstrations or via full model fine-tuning on annotated data. As these app
Externí odkaz:
http://arxiv.org/abs/2411.04535
Autor:
Tie, Xin, Shin, Muheon, Lee, Changhee, Perlman, Scott B., Huemann, Zachary, Weisman, Amy J., Castellino, Sharon M., Kelly, Kara M., McCarten, Kathleen M., Alazraki, Adina L., Hu, Junjie, Cho, Steve Y., Bradshaw, Tyler J.
$\textbf{Purpose}$: Automatic quantification of longitudinal changes in PET scans for lymphoma patients has proven challenging, as residual disease in interim-therapy scans is often subtle and difficult to detect. Our goal was to develop a longitudin
Externí odkaz:
http://arxiv.org/abs/2404.08611
Autor:
Law, Alicia Jiayun, Hu, Ruoyu, Alazraki, Lisa, Gopalan, Anandha, Polydorou, Neophytos, Edalat, Abbas
Publikováno v:
2022 IEEE 4th International Conference on Cognitive Machine Intelligence (CogMI)
In this work, we propose a computational framework that leverages existing out-of-language data to create a conversational agent for the delivery of Self-Attachment Technique (SAT) in Mandarin. Our framework does not require large-scale human transla
Externí odkaz:
http://arxiv.org/abs/2310.18366
Autor:
Elahimanesh, Sina, Salehi, Shayan, Movahed, Sara Zahedi, Alazraki, Lisa, Hu, Ruoyu, Edalat, Abbas
In the wake of the post-pandemic era, marked by social isolation and surging rates of depression and anxiety, conversational agents based on digital psychotherapy can play an influential role compared to traditional therapy sessions. In this work, we
Externí odkaz:
http://arxiv.org/abs/2310.09362
Autor:
Alazraki, Lisa, Castrejon, Lluis, Dehghani, Mostafa, Huot, Fantine, Uijlings, Jasper, Mensink, Thomas
This paper studies ensembling in the era of Large Vision-Language Models (LVLMs). Ensembling is a classical method to combine different models to get increased performance. In the recent work on Encyclopedic-VQA the authors examine a wide variety of
Externí odkaz:
http://arxiv.org/abs/2310.06641
Publikováno v:
2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI), 2021, pp. 78-87
In this work, we present a new dataset and a computational strategy for a digital coach that aims to guide users in practicing the protocols of self-attachment therapy. Our framework augments a rule-based conversational agent with a deep-learning cla
Externí odkaz:
http://arxiv.org/abs/2209.08316
Autor:
Mathilde Alazraki
Publikováno v:
Revue Française de Civilisation Britannique, Vol 29, Iss 3 (2024)
Between 1593 and 1599, Queen Elizabeth I of England corresponded with the Ottoman Sultana Safiye (c. 1550-1606), favorite concubine of Sultan Murad III and mother of Sultan Mehmed III. Of this exchange, only the Sultana’s letters and mentions of th
Externí odkaz:
https://doaj.org/article/b5baa15098054b7e84afefd6ccfd57b3
Autor:
Siegel, Marilyn J, Leung, Daniel H., Molleston, Jean P, Ye, Wen, Paranjape, Shruti M, Freeman, A Jay, Palermo, Joseph J, Stoll, Janis, Masand, Prakash, Karmazyn, Boaz, Harned, Roger, Ling, Simon C, Navarro, Oscar M, Karnsakul, Wikrom, Alazraki, Adina, Schwarzenberg, Sarah Jane, Towbin, Alex J, Alonso, Estella M, Nicholas, Jennifer L., Green, Nicole, Otto, Randolph K, Magee, John C, Narkewicz, Michael R
Publikováno v:
In Journal of Cystic Fibrosis July 2023 22(4):745-755
Publikováno v:
In American Journal of Otolaryngology--Head and Neck Medicine and Surgery July-August 2023 44(4)
Autor:
Welsh, J.A., Pyo, E., Huneault, H., Gonzalez Ramirez, L., Alazraki, A., Alli, R., Dunbar, S.B., Khanna, G., Knight-Scott, Jack, Pimentel, A., Reed, B., Rodney-Somersall, C., Santoro, N., Umpierrez, G., Vos, M.B.
Publikováno v:
In Contemporary Clinical Trials June 2023 129