Zobrazeno 1 - 10
of 742
pro vyhledávání: '"A. Abou-Chakra"'
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-15 (2023)
Abstract The impact of salt crust formation over porous media on water evaporation is an important issue in relation with the water cycle, agriculture, building sciences and more. The salt crust is not a simple accumulation of salt crystals at the po
Externí odkaz:
https://doaj.org/article/d59510a52f5f43e4b08b18aac6fe7ea9
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
Abstract Salt crusts forming at the surface of a porous medium are commonly observed in nature as well as on building materials and pieces of our cultural heritage where they represent a risk for the supporting substrate integrity. Previous research
Externí odkaz:
https://doaj.org/article/58413bd64e2f483bb8b7cdc8ce2033b0
Affordances are central to robotic manipulation, where most tasks can be simplified to interactions with task-specific regions on objects. By focusing on these key regions, we can abstract away task-irrelevant information, simplifying the learning pr
Externí odkaz:
http://arxiv.org/abs/2410.12124
For robots to robustly understand and interact with the physical world, it is highly beneficial to have a comprehensive representation - modelling geometry, physics, and visual observations - that informs perception, planning, and control algorithms.
Externí odkaz:
http://arxiv.org/abs/2406.10788
Autor:
Collaboration, Open X-Embodiment, O'Neill, Abby, Rehman, Abdul, Gupta, Abhinav, Maddukuri, Abhiram, Gupta, Abhishek, Padalkar, Abhishek, Lee, Abraham, Pooley, Acorn, Gupta, Agrim, Mandlekar, Ajay, Jain, Ajinkya, Tung, Albert, Bewley, Alex, Herzog, Alex, Irpan, Alex, Khazatsky, Alexander, Rai, Anant, Gupta, Anchit, Wang, Andrew, Kolobov, Andrey, Singh, Anikait, Garg, Animesh, Kembhavi, Aniruddha, Xie, Annie, Brohan, Anthony, Raffin, Antonin, Sharma, Archit, Yavary, Arefeh, Jain, Arhan, Balakrishna, Ashwin, Wahid, Ayzaan, Burgess-Limerick, Ben, Kim, Beomjoon, Schölkopf, Bernhard, Wulfe, Blake, Ichter, Brian, Lu, Cewu, Xu, Charles, Le, Charlotte, Finn, Chelsea, Wang, Chen, Xu, Chenfeng, Chi, Cheng, Huang, Chenguang, Chan, Christine, Agia, Christopher, Pan, Chuer, Fu, Chuyuan, Devin, Coline, Xu, Danfei, Morton, Daniel, Driess, Danny, Chen, Daphne, Pathak, Deepak, Shah, Dhruv, Büchler, Dieter, Jayaraman, Dinesh, Kalashnikov, Dmitry, Sadigh, Dorsa, Johns, Edward, Foster, Ethan, Liu, Fangchen, Ceola, Federico, Xia, Fei, Zhao, Feiyu, Frujeri, Felipe Vieira, Stulp, Freek, Zhou, Gaoyue, Sukhatme, Gaurav S., Salhotra, Gautam, Yan, Ge, Feng, Gilbert, Schiavi, Giulio, Berseth, Glen, Kahn, Gregory, Yang, Guangwen, Wang, Guanzhi, Su, Hao, Fang, Hao-Shu, Shi, Haochen, Bao, Henghui, Amor, Heni Ben, Christensen, Henrik I, Furuta, Hiroki, Bharadhwaj, Homanga, Walke, Homer, Fang, Hongjie, Ha, Huy, Mordatch, Igor, Radosavovic, Ilija, Leal, Isabel, Liang, Jacky, Abou-Chakra, Jad, Kim, Jaehyung, Drake, Jaimyn, Peters, Jan, Schneider, Jan, Hsu, Jasmine, Vakil, Jay, Bohg, Jeannette, Bingham, Jeffrey, Wu, Jeffrey, Gao, Jensen, Hu, Jiaheng, Wu, Jiajun, Wu, Jialin, Sun, Jiankai, Luo, Jianlan, Gu, Jiayuan, Tan, Jie, Oh, Jihoon, Wu, Jimmy, Lu, Jingpei, Yang, Jingyun, Malik, Jitendra, Silvério, João, Hejna, Joey, Booher, Jonathan, Tompson, Jonathan, Yang, Jonathan, Salvador, Jordi, Lim, Joseph J., Han, Junhyek, Wang, Kaiyuan, Rao, Kanishka, Pertsch, Karl, Hausman, Karol, Go, Keegan, Gopalakrishnan, Keerthana, Goldberg, Ken, Byrne, Kendra, Oslund, Kenneth, Kawaharazuka, Kento, Black, Kevin, Lin, Kevin, Zhang, Kevin, Ehsani, Kiana, Lekkala, Kiran, Ellis, Kirsty, Rana, Krishan, Srinivasan, Krishnan, Fang, Kuan, Singh, Kunal Pratap, Zeng, Kuo-Hao, Hatch, Kyle, Hsu, Kyle, Itti, Laurent, Chen, Lawrence Yunliang, Pinto, Lerrel, Fei-Fei, Li, Tan, Liam, Fan, Linxi "Jim", Ott, Lionel, Lee, Lisa, Weihs, Luca, Chen, Magnum, Lepert, Marion, Memmel, Marius, Tomizuka, Masayoshi, Itkina, Masha, Castro, Mateo Guaman, Spero, Max, Du, Maximilian, Ahn, Michael, Yip, Michael C., Zhang, Mingtong, Ding, Mingyu, Heo, Minho, Srirama, Mohan Kumar, Sharma, Mohit, Kim, Moo Jin, Kanazawa, Naoaki, Hansen, Nicklas, Heess, Nicolas, Joshi, Nikhil J, Suenderhauf, Niko, Liu, Ning, Di Palo, Norman, Shafiullah, Nur Muhammad Mahi, Mees, Oier, Kroemer, Oliver, Bastani, Osbert, Sanketi, Pannag R, Miller, Patrick "Tree", Yin, Patrick, Wohlhart, Paul, Xu, Peng, Fagan, Peter David, Mitrano, Peter, Sermanet, Pierre, Abbeel, Pieter, Sundaresan, Priya, Chen, Qiuyu, Vuong, Quan, Rafailov, Rafael, Tian, Ran, Doshi, Ria, Mart'in-Mart'in, Roberto, Baijal, Rohan, Scalise, Rosario, Hendrix, Rose, Lin, Roy, Qian, Runjia, Zhang, Ruohan, Mendonca, Russell, Shah, Rutav, Hoque, Ryan, Julian, Ryan, Bustamante, Samuel, Kirmani, Sean, Levine, Sergey, Lin, Shan, Moore, Sherry, Bahl, Shikhar, Dass, Shivin, Sonawani, Shubham, Tulsiani, Shubham, Song, Shuran, Xu, Sichun, Haldar, Siddhant, Karamcheti, Siddharth, Adebola, Simeon, Guist, Simon, Nasiriany, Soroush, Schaal, Stefan, Welker, Stefan, Tian, Stephen, Ramamoorthy, Subramanian, Dasari, Sudeep, Belkhale, Suneel, Park, Sungjae, Nair, Suraj, Mirchandani, Suvir, Osa, Takayuki, Gupta, Tanmay, Harada, Tatsuya, Matsushima, Tatsuya, Xiao, Ted, Kollar, Thomas, Yu, Tianhe, Ding, Tianli, Davchev, Todor, Zhao, Tony Z., Armstrong, Travis, Darrell, Trevor, Chung, Trinity, Jain, Vidhi, Kumar, Vikash, Vanhoucke, Vincent, Zhan, Wei, Zhou, Wenxuan, Burgard, Wolfram, Chen, Xi, Chen, Xiangyu, Wang, Xiaolong, Zhu, Xinghao, Geng, Xinyang, Liu, Xiyuan, Liangwei, Xu, Li, Xuanlin, Pang, Yansong, Lu, Yao, Ma, Yecheng Jason, Kim, Yejin, Chebotar, Yevgen, Zhou, Yifan, Zhu, Yifeng, Wu, Yilin, Xu, Ying, Wang, Yixuan, Bisk, Yonatan, Dou, Yongqiang, Cho, Yoonyoung, Lee, Youngwoon, Cui, Yuchen, Cao, Yue, Wu, Yueh-Hua, Tang, Yujin, Zhu, Yuke, Zhang, Yunchu, Jiang, Yunfan, Li, Yunshuang, Li, Yunzhu, Iwasawa, Yusuke, Matsuo, Yutaka, Ma, Zehan, Xu, Zhuo, Cui, Zichen Jeff, Zhang, Zichen, Fu, Zipeng, Lin, Zipeng
Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretra
Externí odkaz:
http://arxiv.org/abs/2310.08864
Large language models (LLMs) have demonstrated impressive results in developing generalist planning agents for diverse tasks. However, grounding these plans in expansive, multi-floor, and multi-room environments presents a significant challenge for r
Externí odkaz:
http://arxiv.org/abs/2307.06135
While existing Neural Radiance Fields (NeRFs) for dynamic scenes are offline methods with an emphasis on visual fidelity, our paper addresses the online use case that prioritises real-time adaptability. We present ParticleNeRF, a new approach that dy
Externí odkaz:
http://arxiv.org/abs/2211.04041
Fabric manipulation is a long-standing challenge in robotics due to the enormous state space and complex dynamics. Learning approaches stand out as promising for this domain as they allow us to learn behaviours directly from data. Most prior methods
Externí odkaz:
http://arxiv.org/abs/2211.02832
We show that ensembling effectively quantifies model uncertainty in Neural Radiance Fields (NeRFs) if a density-aware epistemic uncertainty term is considered. The naive ensembles investigated in prior work simply average rendered RGB images to quant
Externí odkaz:
http://arxiv.org/abs/2209.08718
Modelling individual objects in a scene as Neural Radiance Fields (NeRFs) provides an alternative geometric scene representation that may benefit downstream robotics tasks such as scene understanding and object manipulation. However, we identify thre
Externí odkaz:
http://arxiv.org/abs/2204.10516