Zobrazeno 1 - 10
of 67 395
pro vyhledávání: '"A. A. Toro"'
Autor:
Aguilera-del-Toro, Rodrigo Humberto, Arruabarrena, Mikel, Leonardo, Aritz, Rodriguez-Vega, Martin, Fiete, Gregory A., Ayuela, Andrés
The manganese pnictide CaMn$_2$Bi$_2$, with Mn atoms arranged in a puckered honeycomb structure, exhibits narrow-gap antiferromagnetism, and it is currently a promising candidate for the study of complex electronic and magnetic phenomena, such as mag
Externí odkaz:
http://arxiv.org/abs/2410.23053
Autor:
Shuntov, M., Ilbert, O., Toft, S., Arango-Toro, R. C., Akins, H. B., Casey, C. M., Franco, M., Harish, S., Kartaltepe, J. S., Koekemoer, A. M., McCracken, H. J., Paquereau, L., Laigle, C., Bethermin, M., Dubois, Y., Drakos, N. E., Faisst, A., Gozaliasl, G., Gillman, S., Hayward, C. C., Hirschmann, M., Huertas-Company, M., Jespersen, C. K., Jin, S., Kokorev, V., Lambrides, E., Borgne, D. Le, Liu, D., Magdis, G., Massey, R., McPartland, C. J. R., Mercier, W., McCleary, J. E., McKinney, J., Oesch, P. A., Rhodes, J. D., Rich, R. M., Robertson, B. E., Sanders, D., Trebitsch, M., Tresse, L., Valentino, F., Vijayan, A. P., Weaver, J. R., Weibel, A., Wilkins, S. M.
We study the stellar mass function (SMF) and the co-evolution with dark matter halos via abundance matching in the largest redshift range to date $0.25$, we find increas
Externí odkaz:
http://arxiv.org/abs/2410.08290
Autor:
Gyawali, Gaurav, Cochran, Tyler, Lensky, Yuri, Rosenberg, Eliott, Karamlou, Amir H., Kechedzhi, Kostyantyn, Berndtsson, Julia, Westerhout, Tom, Asfaw, Abraham, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Astrakhantsev, Nikita, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Das, Sayan, Debroy, Dripto M., De Lorenzo, Laura, Barba, Alexander Del Toro, Demura, Sean, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Earle, Clint, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Fatemi, Reza, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Giang, William, Gidney, Craig, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hill, Gordon, Hilton, Jeremy, Hoffmann, Markus R., Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Ioffe, Lev B., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kieferová, Mária, Kim, Seon, Klimov, Paul V., Klots, Andrey R., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Joonho, Lee, Kenny, Lester, Brian J., Li, Wing Yan, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Steven, Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Mi, Xiao, Miao, Kevin C., Mieszala, Amanda, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Neill, Charles, Nersisyan, Ani, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rocque, Charles, Rubin, Nicholas C., Saei, Negar, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szalay, Marco, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vdovichev, Sergey, Vidal, Guifré, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobrist, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Kovrizhin, Dmitry, Knolle, Johannes, Halimeh, Jad C., Aleiner, Igor, Moessner, Roderich, Roushan, Pedram
One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient pro
Externí odkaz:
http://arxiv.org/abs/2410.06557
Autor:
Arango-Toro, R. C., Ilbert, O., Ciesla, L., Shuntov, M., Aufort, G., Mercier, W., Laigle, C., Franco, M., Bethermin, M., Borgne, D. Le, Dubois, Y., McCracken, H. J., Paquereau, L., Huertas-Company, M., Kartaltepe, J., Casey, C. M., Akins, H., Allen, N., Andika, I., Brinch, M., Drakos, N. E., Faisst, A., Gozaliasl, G., Harish, S., Kaminsky, A., Koekemoer, A., Kokorev, V., Liu, D., Magdis, G., Martin, C. L., Moutard, T., Rhodes, J., Rich, R. M., Robertson, B., Sanders, D. B., Sheth, K., Talia, M., Toft, S., Tresse, L., Valentino, F., Vijayan, A., Weaver, J.
The stellar mass-star formation rate (M$_\star$ - SFR) plane is essential for distinguishing galaxy populations, but how galaxies move within this plane over cosmic time remains unclear. This study aims to describe galaxy migrations in the M$_\star$
Externí odkaz:
http://arxiv.org/abs/2410.05375
Publikováno v:
Oldenburg, V., Cardenas-Cartagena, J., & Valdenegro-Toro, M. (2024). Forecasting smog clouds with deep learning: A proof-of-concept. In ICML 2024 AI for Science Workshop. https://openreview.net/forum?id=UQa2PEVHMF
In this proof-of-concept study, we conduct multivariate timeseries forecasting for the concentrations of nitrogen dioxide (NO2), ozone (O3), and (fine) particulate matter (PM10 & PM2.5) with meteorological covariates between two locations using vario
Externí odkaz:
http://arxiv.org/abs/2410.02759
Autor:
Aufort, G., Laigle, C., McCracken, H. J., Borgne, D. Le, Arango-Toro, R., Ciesla, L., Ilbert, O., Tresse, L., Dubois, Y.
We propose a novel method to reconstruct the full posterior distribution of the star formation histories (SFHs) of galaxies from broad-band photometry. Our method combines simulation-based inference (SBI) using a neural network trained with SFHs and
Externí odkaz:
http://arxiv.org/abs/2410.00795
Autor:
Arasteh, Soroosh Tayebi, Lotfinia, Mahshad, Perez-Toro, Paula Andrea, Arias-Vergara, Tomas, Orozco-Arroyave, Juan Rafael, Schuster, Maria, Maier, Andreas, Yang, Seung Hee
Speech pathology has impacts on communication abilities and quality of life. While deep learning-based models have shown potential in diagnosing these disorders, the use of sensitive data raises critical privacy concerns. Although differential privac
Externí odkaz:
http://arxiv.org/abs/2409.19078
Autor:
Isaza, Paulina Toro, Nidd, Michael, Zheutlin, Noah, Ahn, Jae-wook, Bhatt, Chidansh Amitkumar, Deng, Yu, Mahindru, Ruchi, Franz, Martin, Florian, Hans, Roukos, Salim
Clients wishing to implement generative AI in the domain of IT Support and AIOps face two critical issues: domain coverage and model size constraints due to model choice limitations. Clients might choose to not use larger proprietary models such as G
Externí odkaz:
http://arxiv.org/abs/2409.13707
Uncertainty Quantification in Machine Learning has progressed to predicting the source of uncertainty in a prediction: Uncertainty from stochasticity in the data (aleatoric), or uncertainty from limitations of the model (epistemic). Generally, each u
Externí odkaz:
http://arxiv.org/abs/2408.12175
The AI act is the European Union-wide regulation of AI systems. It includes specific provisions for general-purpose AI models which however need to be further interpreted in terms of technical standards and state-of-art studies to ensure practical co
Externí odkaz:
http://arxiv.org/abs/2408.11249