Zobrazeno 1 - 10
of 382
pro vyhledávání: '"A. A. Arefyev"'
This paper describes our solution of the first subtask from the AXOLOTL-24 shared task on Semantic Change Modeling. The goal of this subtask is to distribute a given set of usages of a polysemous word from a newer time period between senses of this w
Externí odkaz:
http://arxiv.org/abs/2408.05184
Autor:
Kokosinskii, Denis, Arefyev, Nikolay
Word Sense Induction (WSI) is the task of discovering senses of an ambiguous word by grouping usages of this word into clusters corresponding to these senses. Many approaches were proposed to solve WSI in English and a few other languages, but these
Externí odkaz:
http://arxiv.org/abs/2405.11086
Lexical Semantic Change Detection (LSCD) is a complex, lemma-level task, which is usually operationalized based on two subsequently applied usage-level tasks: First, Word-in-Context (WiC) labels are derived for pairs of usages. Then, these labels are
Externí odkaz:
http://arxiv.org/abs/2404.00176
We present a dataset of word usage graphs (WUGs), where the existing WUGs for multiple languages are enriched with cluster labels functioning as sense definitions. They are generated from scratch by fine-tuned encoder-decoder language models. The con
Externí odkaz:
http://arxiv.org/abs/2403.18024
Autor:
de Gibert, Ona, Nail, Graeme, Arefyev, Nikolay, Bañón, Marta, van der Linde, Jelmer, Ji, Shaoxiong, Zaragoza-Bernabeu, Jaume, Aulamo, Mikko, Ramírez-Sánchez, Gema, Kutuzov, Andrey, Pyysalo, Sampo, Oepen, Stephan, Tiedemann, Jörg
We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive
Externí odkaz:
http://arxiv.org/abs/2403.14009
Autor:
Kudisov, Artem, Arefyev, Nikolay
Publikováno v:
Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pages 165-172, Dublin, Ireland. 2022
We propose a solution for the LSCDiscovery shared task on Lexical Semantic Change Detection in Spanish. Our approach is based on generating lexical substitutes that describe old and new senses of a given word. This approach achieves the second best r
Externí odkaz:
http://arxiv.org/abs/2206.11865
Autor:
Bingyu, Zhang, Arefyev, Nikolay
Publikováno v:
Proceedings of the Third Workshop on Insights from Negative Results in NLP, pages 129-133, Dublin, Ireland. Association for Computational Linguistics. 2022
The current state-of-the-art test accuracy (97.42\%) on the IMDB movie reviews dataset was reported by \citet{thongtan-phienthrakul-2019-sentiment} and achieved by the logistic regression classifier trained on the Document Vectors using Cosine Simila
Externí odkaz:
http://arxiv.org/abs/2205.13357
Publikováno v:
Bian, Jie Welzl, Michael Kutuzov, Andrey Arefyev, Nikolay . Tell Me Why: Language Models Help Explain the Rationale Behind Internet Protocol Design. 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN). 2024 IEEE conference proceedings
Externí odkaz:
http://hdl.handle.net/10852/113712
Autor:
M. Ya. Krasnoselsky, Ye. V. Koshkina, N. M, Fedorovsky, Ye. V. Goryacheva, A. A. Polupan, A. A. Arefyev, M. Z. Bratanova
Publikováno v:
Общая реаниматология, Vol 4, Iss 4 (2008)
There have been recently reports on elevated levels of cardiac troponins in patients without acute myocardial infarction (AMI). The purpose of the study was to analyze final diagnoses in patients with elevated cardiac troponin-T levels without clinic
Externí odkaz:
https://doaj.org/article/ff376d4e291146879f4f52bba868ec30
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.