Zobrazeno 1 - 10
of 28 620
pro vyhledávání: '"A. A., Sujata"'
Methods to handle missing data have been extensively explored in the context of estimation and descriptive studies, with multiple imputation being the most widely used method in clinical research. However, in the context of clinical risk prediction m
Externí odkaz:
http://arxiv.org/abs/2411.14542
Autor:
Jain, Nitisha, Akhtar, Mubashara, Giner-Miguelez, Joan, Shinde, Rajat, Vanschoren, Joaquin, Vogler, Steffen, Goswami, Sujata, Rao, Yuhan, Santos, Tim, Oala, Luis, Karamousadakis, Michalis, Maskey, Manil, Marcenac, Pierre, Conforti, Costanza, Kuchnik, Michael, Aroyo, Lora, Benjelloun, Omar, Simperl, Elena
Data is critical to advancing AI technologies, yet its quality and documentation remain significant challenges, leading to adverse downstream effects (e.g., potential biases) in AI applications. This paper addresses these issues by introducing Croiss
Externí odkaz:
http://arxiv.org/abs/2407.16883
Autor:
Nandi, Srijaya, Chakraborty, Mousumi, Lahiri, Aesha, Gope, Hindolii, Bhaduri, Sujata Khan, Bhadra, Anindita
Individual human recognition is important for species that live in close proximity to humans. Numerous studies on domesticated species and urban-adapted birds have highlighted this ability. One such species which is heavily reliant on humans is the f
Externí odkaz:
http://arxiv.org/abs/2405.19936
Autor:
Liu, Xiaoning, Wu, Zongwei, Li, Ao, Vasluianu, Florin-Alexandru, Zhang, Yulun, Gu, Shuhang, Zhang, Le, Zhu, Ce, Timofte, Radu, Jin, Zhi, Wu, Hongjun, Wang, Chenxi, Ling, Haitao, Cai, Yuanhao, Bian, Hao, Zheng, Yuxin, Lin, Jing, Yuille, Alan, Shao, Ben, Guo, Jin, Liu, Tianli, Wu, Mohao, Feng, Yixu, Hou, Shuo, Lin, Haotian, Zhu, Yu, Wu, Peng, Dong, Wei, Sun, Jinqiu, Zhang, Yanning, Yan, Qingsen, Zou, Wenbin, Yang, Weipeng, Li, Yunxiang, Wei, Qiaomu, Ye, Tian, Chen, Sixiang, Zhang, Zhao, Zhao, Suiyi, Wang, Bo, Luo, Yan, Zuo, Zhichao, Wang, Mingshen, Wang, Junhu, Wei, Yanyan, Sun, Xiaopeng, Gao, Yu, Huang, Jiancheng, Chen, Hongming, Chen, Xiang, Tang, Hui, Chen, Yuanbin, Zhou, Yuanbo, Dai, Xinwei, Qiu, Xintao, Deng, Wei, Gao, Qinquan, Tong, Tong, Li, Mingjia, Hu, Jin, He, Xinyu, Guo, Xiaojie, Sabarinathan, Uma, K, Sasithradevi, A, Bama, B Sathya, Roomi, S. Mohamed Mansoor, Srivatsav, V., Wang, Jinjuan, Sun, Long, Chen, Qiuying, Shao, Jiahong, Zhang, Yizhi, Conde, Marcos V., Feijoo, Daniel, Benito, Juan C., García, Alvaro, Lee, Jaeho, Kim, Seongwan, A, Sharif S M, Khujaev, Nodirkhuja, Tsoy, Roman, Murtaza, Ali, Khairuddin, Uswah, Faudzi, Ahmad 'Athif Mohd, Malagi, Sampada, Joshi, Amogh, Akalwadi, Nikhil, Desai, Chaitra, Tabib, Ramesh Ashok, Mudenagudi, Uma, Lian, Wenyi, Lian, Wenjing, Kalyanshetti, Jagadeesh, Aralikatti, Vijayalaxmi Ashok, Yashaswini, Palani, Upasi, Nitish, Hegde, Dikshit, Patil, Ujwala, C, Sujata, Yan, Xingzhuo, Hao, Wei, Fu, Minghan, choksy, Pooja, Sarvaiya, Anjali, Upla, Kishor, Raja, Kiran, Yan, Hailong, Zhang, Yunkai, Li, Baiang, Zhang, Jingyi, Zheng, Huan
This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results. The aim of this challenge is to discover an effective network design or solution capable of generating brighter, clearer, and vi
Externí odkaz:
http://arxiv.org/abs/2404.14248
Autor:
Vidgen, Bertie, Agrawal, Adarsh, Ahmed, Ahmed M., Akinwande, Victor, Al-Nuaimi, Namir, Alfaraj, Najla, Alhajjar, Elie, Aroyo, Lora, Bavalatti, Trupti, Bartolo, Max, Blili-Hamelin, Borhane, Bollacker, Kurt, Bomassani, Rishi, Boston, Marisa Ferrara, Campos, Siméon, Chakra, Kal, Chen, Canyu, Coleman, Cody, Coudert, Zacharie Delpierre, Derczynski, Leon, Dutta, Debojyoti, Eisenberg, Ian, Ezick, James, Frase, Heather, Fuller, Brian, Gandikota, Ram, Gangavarapu, Agasthya, Gangavarapu, Ananya, Gealy, James, Ghosh, Rajat, Goel, James, Gohar, Usman, Goswami, Sujata, Hale, Scott A., Hutiri, Wiebke, Imperial, Joseph Marvin, Jandial, Surgan, Judd, Nick, Juefei-Xu, Felix, Khomh, Foutse, Kailkhura, Bhavya, Kirk, Hannah Rose, Klyman, Kevin, Knotz, Chris, Kuchnik, Michael, Kumar, Shachi H., Kumar, Srijan, Lengerich, Chris, Li, Bo, Liao, Zeyi, Long, Eileen Peters, Lu, Victor, Luger, Sarah, Mai, Yifan, Mammen, Priyanka Mary, Manyeki, Kelvin, McGregor, Sean, Mehta, Virendra, Mohammed, Shafee, Moss, Emanuel, Nachman, Lama, Naganna, Dinesh Jinenhally, Nikanjam, Amin, Nushi, Besmira, Oala, Luis, Orr, Iftach, Parrish, Alicia, Patlak, Cigdem, Pietri, William, Poursabzi-Sangdeh, Forough, Presani, Eleonora, Puletti, Fabrizio, Röttger, Paul, Sahay, Saurav, Santos, Tim, Scherrer, Nino, Sebag, Alice Schoenauer, Schramowski, Patrick, Shahbazi, Abolfazl, Sharma, Vin, Shen, Xudong, Sistla, Vamsi, Tang, Leonard, Testuggine, Davide, Thangarasa, Vithursan, Watkins, Elizabeth Anne, Weiss, Rebecca, Welty, Chris, Wilbers, Tyler, Williams, Adina, Wu, Carole-Jean, Yadav, Poonam, Yang, Xianjun, Zeng, Yi, Zhang, Wenhui, Zhdanov, Fedor, Zhu, Jiacheng, Liang, Percy, Mattson, Peter, Vanschoren, Joaquin
This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introdu
Externí odkaz:
http://arxiv.org/abs/2404.12241
The distribution of efficient individuals in the economy and the efforts that they will put in if they are hired, there are two important concerns for a technologically advanced firm. wants to open a new branch. The firm does not have information abo
Externí odkaz:
http://arxiv.org/abs/2404.16056
Autor:
Akhtar, Mubashara, Benjelloun, Omar, Conforti, Costanza, Foschini, Luca, Giner-Miguelez, Joan, Gijsbers, Pieter, Goswami, Sujata, Jain, Nitisha, Karamousadakis, Michalis, Kuchnik, Michael, Krishna, Satyapriya, Lesage, Sylvain, Lhoest, Quentin, Marcenac, Pierre, Maskey, Manil, Mattson, Peter, Oala, Luis, Oderinwale, Hamidah, Ruyssen, Pierre, Santos, Tim, Shinde, Rajat, Simperl, Elena, Suresh, Arjun, Thomas, Goeffry, Tykhonov, Slava, Vanschoren, Joaquin, Varma, Susheel, van der Velde, Jos, Vogler, Steffen, Wu, Carole-Jean, Zhang, Luyao
Data is a critical resource for machine learning (ML), yet working with data remains a key friction point. This paper introduces Croissant, a metadata format for datasets that creates a shared representation across ML tools, frameworks, and platforms
Externí odkaz:
http://arxiv.org/abs/2403.19546
Publikováno v:
International Journal of Solids and Structures 300, 112917 (2024)
In this study, we present a concept of morphing structure -- featuring an arch mounted on a compliant base -- that can be reconfigured via snap-through buckling and leverages bistability to retain its morphed shape. We show that one-dimensional array
Externí odkaz:
http://arxiv.org/abs/2403.02505
Publikováno v:
Indian Journal of Ophthalmology, Vol 72, Iss 12, Pp 1728-1733 (2024)
Purpose: To compare the visual outcomes, postoperative complications, and graft asymmetry between precut and manually dissected donor tissues for Descemet stripping automated endothelial keratoplasty (DSAEK) and Descemet stripping endothelial keratop
Externí odkaz:
https://doaj.org/article/01405968c30a4831a47e9831b2e9da5e