Zobrazeno 1 - 10
of 604 767
pro vyhledávání: '"A. A., Francis"'
Autor:
Willett, Francis R., Li, Jingyuan, Le, Trung, Fan, Chaofei, Chen, Mingfei, Shlizerman, Eli, Chen, Yue, Zheng, Xin, Okubo, Tatsuo S., Benster, Tyler, Lee, Hyun Dong, Kounga, Maxwell, Buchanan, E. Kelly, Zoltowski, David, Linderman, Scott W., Henderson, Jaimie M.
Speech brain-computer interfaces aim to decipher what a person is trying to say from neural activity alone, restoring communication to people with paralysis who have lost the ability to speak intelligibly. The Brain-to-Text Benchmark '24 and associat
Externí odkaz:
http://arxiv.org/abs/2412.17227
Autor:
Katznelson, Shaul, Kasten, Noam, Tziperman, Offek, Shultzman, Avner, Bucher, Tomer, Abudi, Tom Lenkiewicz, Schuetz, Roman, Be'er, Orr, Levy, Shai, Strassberg, Rotem, Dosovitsky, Georgy, Yanagimoto, Sotatsu, Loignon-Houle, Francis, Bekenstein, Yehonadav, Roques-Carmes, Charles, Kaminer, Ido
Hanbury Brown and Twiss (HBT) interferometry is a milestone experiment that transformed our understanding of the nature of light. The concept was demonstrated in 1956 to measure the radii of stars through photon coincidence detection. This form of co
Externí odkaz:
http://arxiv.org/abs/2412.16975
Autor:
OpenAI, Jaech, Aaron, Kalai, Adam, Lerer, Adam, Richardson, Adam, El-Kishky, Ahmed, Low, Aiden, Helyar, Alec, Madry, Aleksander, Beutel, Alex, Carney, Alex, Iftimie, Alex, Karpenko, Alex, Passos, Alex Tachard, Neitz, Alexander, Prokofiev, Alexander, Wei, Alexander, Tam, Allison, Bennett, Ally, Kumar, Ananya, Saraiva, Andre, Vallone, Andrea, Duberstein, Andrew, Kondrich, Andrew, Mishchenko, Andrey, Applebaum, Andy, Jiang, Angela, Nair, Ashvin, Zoph, Barret, Ghorbani, Behrooz, Rossen, Ben, Sokolowsky, Benjamin, Barak, Boaz, McGrew, Bob, Minaiev, Borys, Hao, Botao, Baker, Bowen, Houghton, Brandon, McKinzie, Brandon, Eastman, Brydon, Lugaresi, Camillo, Bassin, Cary, Hudson, Cary, Li, Chak Ming, de Bourcy, Charles, Voss, Chelsea, Shen, Chen, Zhang, Chong, Koch, Chris, Orsinger, Chris, Hesse, Christopher, Fischer, Claudia, Chan, Clive, Roberts, Dan, Kappler, Daniel, Levy, Daniel, Selsam, Daniel, Dohan, David, Farhi, David, Mely, David, Robinson, David, Tsipras, Dimitris, Li, Doug, Oprica, Dragos, Freeman, Eben, Zhang, Eddie, Wong, Edmund, Proehl, Elizabeth, Cheung, Enoch, Mitchell, Eric, Wallace, Eric, Ritter, Erik, Mays, Evan, Wang, Fan, Such, Felipe Petroski, Raso, Filippo, Leoni, Florencia, Tsimpourlas, Foivos, Song, Francis, von Lohmann, Fred, Sulit, Freddie, Salmon, Geoff, Parascandolo, Giambattista, Chabot, Gildas, Zhao, Grace, Brockman, Greg, Leclerc, Guillaume, Salman, Hadi, Bao, Haiming, Sheng, Hao, Andrin, Hart, Bagherinezhad, Hessam, Ren, Hongyu, Lightman, Hunter, Chung, Hyung Won, Kivlichan, Ian, O'Connell, Ian, Osband, Ian, Gilaberte, Ignasi Clavera, Akkaya, Ilge, Kostrikov, Ilya, Sutskever, Ilya, Kofman, Irina, Pachocki, Jakub, Lennon, James, Wei, Jason, Harb, Jean, Twore, Jerry, Feng, Jiacheng, Yu, Jiahui, Weng, Jiayi, Tang, Jie, Yu, Jieqi, Candela, Joaquin Quiñonero, Palermo, Joe, Parish, Joel, Heidecke, Johannes, Hallman, John, Rizzo, John, Gordon, Jonathan, Uesato, Jonathan, Ward, Jonathan, Huizinga, Joost, Wang, Julie, Chen, Kai, Xiao, Kai, Singhal, Karan, Nguyen, Karina, Cobbe, Karl, Shi, Katy, Wood, Kayla, Rimbach, Kendra, Gu-Lemberg, Keren, GuLemberg, Keren, Liu, Kevin, Lu, Kevin, Stone, Kevin, Yu, Kevin, Ahmad, Lama, Yang, Lauren, Liu, Leo, Maksin, Leon, Ho, Leyton, Fedus, Liam, Weng, Lilian, Li, Linden, McCallum, Lindsay, Held, Lindsey, Kuhn, Lorenz, Kondraciuk, Lukas, Kaiser, Lukasz, Metz, Luke, Boyd, Madelaine, Trebacz, Maja, Joglekar, Manas, Chen, Mark, Tintor, Marko, Meyer, Mason, Jones, Matt, Kaufer, Matt, Schwarzer, Max, Shah, Meghan, Yatbaz, Mehmet, Guan, Melody, Xu, Mengyuan, Yan, Mengyuan, Glaese, Mia, Chen, Mianna, Lampe, Michael, Malek, Michael, Wang, Michele, Fradin, Michelle, McClay, Mike, Pavlov, Mikhail, Wang, Miles, Wang, Mingxuan, Murati, Mira, Bavarian, Mo, Rohaninejad, Mostafa, McAleese, Nat, Chowdhury, Neil, Ryder, Nick, Tezak, Nikolas, Brown, Noam, Nachum, Ofir, Boiko, Oleg, Murk, Oleg, Watkins, Olivia, Chao, Patrick, Ashbourne, Paul, Izmailov, Pavel, Zhokhov, Peter, Dias, Rachel, Arora, Rahul, Lin, Randall, Lopes, Rapha Gontijo, Gaon, Raz, Miyara, Reah, Leike, Reimar, Hwang, Renny, Garg, Rhythm, Brown, Robin, James, Roshan, Shu, Rui, Cheu, Ryan, Greene, Ryan, Jain, Saachi, Altman, Sam, Toizer, Sam, Toyer, Sam, Miserendino, Samuel, Agarwal, Sandhini, Hernandez, Santiago, Baker, Sasha, McKinney, Scott, Yan, Scottie, Zhao, Shengjia, Hu, Shengli, Santurkar, Shibani, Chaudhuri, Shraman Ray, Zhang, Shuyuan, Fu, Siyuan, Papay, Spencer, Lin, Steph, Balaji, Suchir, Sanjeev, Suvansh, Sidor, Szymon, Broda, Tal, Clark, Aidan, Wang, Tao, Gordon, Taylor, Sanders, Ted, Patwardhan, Tejal, Sottiaux, Thibault, Degry, Thomas, Dimson, Thomas, Zheng, Tianhao, Garipov, Timur, Stasi, Tom, Bansal, Trapit, Creech, Trevor, Peterson, Troy, Eloundou, Tyna, Qi, Valerie, Kosaraju, Vineet, Monaco, Vinnie, Pong, Vitchyr, Fomenko, Vlad, Zheng, Weiyi, Zhou, Wenda, McCabe, Wes, Zaremba, Wojciech, Dubois, Yann, Lu, Yinghai, Chen, Yining, Cha, Young, Bai, Yu, He, Yuchen, Zhang, Yuchen, Wang, Yunyun, Shao, Zheng, Li, Zhuohan
The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can re
Externí odkaz:
http://arxiv.org/abs/2412.16720
Autor:
Eberle, Andreas, Lörler, Francis
Non-reversible lifts reduce the relaxation time of reversible diffusions at most by a square root. For reversible diffusions on domains in Euclidean space, or, more generally, on a Riemannian manifold with boundary, non-reversible lifts are in partic
Externí odkaz:
http://arxiv.org/abs/2412.16710
Sliced inverse regression (SIR) is a popular sufficient dimension reduction method that identifies a few linear transformations of the covariates without losing regression information with the response. In high-dimensional settings, SIR can be combin
Externí odkaz:
http://arxiv.org/abs/2412.15530
Autor:
Pang, Yatian, Jin, Peng, Yang, Shuo, Lin, Bin, Zhu, Bin, Tang, Zhenyu, Chen, Liuhan, Tay, Francis E. H., Lim, Ser-Nam, Yang, Harry, Yuan, Li
Autoregressive models, built based on the Next Token Prediction (NTP) paradigm, show great potential in developing a unified framework that integrates both language and vision tasks. In this work, we rethink the NTP for autoregressive image generatio
Externí odkaz:
http://arxiv.org/abs/2412.15321
Robot learning is witnessing a significant increase in the size, diversity, and complexity of pre-collected datasets, mirroring trends in domains such as natural language processing and computer vision. Many robot learning methods treat such datasets
Externí odkaz:
http://arxiv.org/abs/2412.15182
Weak lensing surveys, along with most other late-Universe probes, have consistently measured a lower amplitude of the matter fluctuation spectrum, denoted by the parameter $S_8$, compared to predictions from early-Universe measurements in cosmic micr
Externí odkaz:
http://arxiv.org/abs/2412.14704
Autor:
Saxena, Saumya, Buchanan, Blake, Paxton, Chris, Chen, Bingqing, Vaskevicius, Narunas, Palmieri, Luigi, Francis, Jonathan, Kroemer, Oliver
In Embodied Question Answering (EQA), agents must explore and develop a semantic understanding of an unseen environment in order to answer a situated question with confidence. This remains a challenging problem in robotics, due to the difficulties in
Externí odkaz:
http://arxiv.org/abs/2412.14480
Autor:
Jiang, Yuxuan, Ferraro, Francis
Recently, Large Language Models (LLMs) have shown impressive performance in character understanding tasks, such as analyzing the roles, personalities, and relationships of fictional characters. However, the extensive pre-training corpora used by LLMs
Externí odkaz:
http://arxiv.org/abs/2412.14368