Zobrazeno 1 - 10
of 248
pro vyhledávání: '"A. Agore"'
In general, universal (co)measuring (co)monoids and universal (co)acting bi/Hopf monoids, which prove to be a useful tool in the classification of quantum symmetries, do not always exist. In order to ensure their existence, the support of a given obj
Externí odkaz:
http://arxiv.org/abs/2406.17684
The universal (co)acting bi/Hopf algebras introduced by Yu.\,I.~Manin, M.~Sweedler and D.~Tambara, the universal Hopf algebra of a given (co)module structure, as well as the universal group of a grading, introduced by J.~Patera and H.~Zassenhaus, fin
Externí odkaz:
http://arxiv.org/abs/2406.17677
We provide an answer, in a special but relevant case, to an open problem of Drinfel'd by proving that the category of solutions of the set-theoretic Yang-Baxter equation of Frobenius-Separability (FS) type is equivalent to the category of pointed Kim
Externí odkaz:
http://arxiv.org/abs/2303.06700
Autor:
Agore, A. L., Militaru, G.
Publikováno v:
Journal of Algebra 638 (2024), 32-56
We introduce the \emph{universal algebra} of two Poisson algebras $P$ and $Q$ as a commutative algebra $A:={\mathcal P} (P, \, Q )$ satisfying a certain universal property. The universal algebra is shown to exist for any finite dimensional Poisson al
Externí odkaz:
http://arxiv.org/abs/2301.03807
Autor:
Agore, A. L.
Publikováno v:
Linear Algebra and its Applications 688 (2024), 104-119
Let $\mathfrak{g}$ and $\mathfrak{h}$ be two Lie algebras with $\mathfrak{h}$ finite dimensional and consider ${\mathcal A} = {\mathcal A} (\mathfrak{h}, \, \mathfrak{g})$ to be the corresponding universal algebra as introduced in \cite{am20}. Given
Externí odkaz:
http://arxiv.org/abs/2301.03051
Autor:
Agore, A. L., Militaru, G.
Publikováno v:
Collectanea Mathematica 74 (2023), 687-701
We investigate the factorization problem as well as the classifying complements problem in the setting of Jordan algebras. Matched pairs of Jordan algebras and the corresponding bicrossed products are introduced. It is shown that any Jordan algebra w
Externí odkaz:
http://arxiv.org/abs/2202.05121
Autor:
Thomas Hinneh, Foster Osei Baah, Evelyn Amoako, Diana Baptiste, Ruth‐Alma Turkson‐Ocran, Angela Agore, Stephen Adombire, Matilda Decker, Daniel Apau, Irene Fankah, Praba Koomson, Bernard Mensah, Jacqueline Idun, Samuel Akyirem, Yvonne Commodore‐Mensah
Publikováno v:
Nursing Open, Vol 10, Iss 12, Pp 7450-7453 (2023)
Externí odkaz:
https://doaj.org/article/4346ec3dbd4142bca34b5f5d71063550
Autor:
Agore, A.L.
Publikováno v:
In Linear Algebra and Its Applications 1 May 2024 688:104-119
Autor:
Agore, A. L., Militaru, G.
Publikováno v:
J. Pure Appl. Algebra 227 (2023), 1-19
Given a Jordan algebra $A$ and a vector space $V$, we describe and classify all Jordan algebras containing $A$ as a subalgebra of codimension ${\rm dim}_k (V)$ in terms of a non-abelian cohomological type object ${\mathcal J}_{A} \, (V, \, A)$. Any s
Externí odkaz:
http://arxiv.org/abs/2107.04970
Autor:
Agore, A. L., Militaru, G.
Publikováno v:
Linear Algebra and its Applications 630 (2021), 158-178
For a given Jacobi-Jordan algebra $A$ and a vector space $V$ over a field $k$, a non-abelian cohomological type object ${\mathcal H}^{2}_{A} \, (V, \, A)$ is constructed: it classifies all Jacobi-Jordan algebras containing $A$ as a subalgebra of codi
Externí odkaz:
http://arxiv.org/abs/2105.14722