Zobrazeno 1 - 10
of 21 019
pro vyhledávání: '"A. , SIMEONE"'
Autor:
Acerbi, F., Adhikari, P., Agnes, P., Ahmad, I., Albergo, S., Albuquerque, I. F., Alexander, T., Alton, A. K., Amaudruz, P., Aprile, M. Angiolilli. E., Corona, M. Atzori, Auty, D. J., Ave, M., Avetisov, I. C., Azzolini, O., Back, H. O., Balmforth, Z., Olmedo, A. Barrado, Barrillon, P., Batignani, G., Bhowmick, P., Bloem, M., Blua, S., Bocci, V., Bonivento, W., Bottino, B., Boulay, M. G., Buchowicz, A., Bussino, S., Busto, J., Cadeddu, M., Cadoni, M., Calabrese, R., Camillo, V., Caminata, A., Canci, N., Capra, A., Caravati, M., Cardenas-Montes, M., Cargioli, N., Carlini, M., Castello, P., Cavalcante, P., Cebrian, S., Ruiz, J. Cela, Chashin, S., Chepurnov, A., Cifarelli, L., Cintas, D., Cleveland, B., Coadou, Y., Cocco, V., Colaiuda, D., Vilda, E. Conde, Consiglio, L., Costa, B. S., Czubak, M., D'Auria, S., Rolo, M. D. Da Rocha, Darbo, G., Davini, S., de Asmundis, R., De Cecco, S., Dellacasa, G., Derbin, A. V., Di Capua, F., Di Noto, L., Di Stefano, P., Dias, L. K., Dionisi, C., Dolganov, G., Dordei, F., Dronik, V., Elersich, A., Ellingwood, E., Erjavec, T., Fearon, N., Diaz, M. Fernandez, Ficorella, A., Fiorillo, G., Franchini, P., Franco, D., Gatti, H. Frandini, Frolov, E., Gabriele, F., Gahan, D., Galbiati, C., Galiski, G., Gallina, G., Gallus, G., Garbini, M., Abia, P. Garcia, Gawdzik, A., Gendotti, A., Giovanetti, G. K., Casanueva, V. Goicoechea, Gola, A., Grandi, L., Grauso, G., di Cortona, G. Grilli, Grobov, A., Gromov, M., Gulino, M., Guo, C., Hackett, B. R., Hallin, A., Hamer, A., Haranczyk, M., Hessel, T., Horikawa, S., Hu, J., Hubaut, F., Hucker, J., Hugues, T., Hungerford, E. V., Ianni, A., Ippoliti, G., Ippolito, V., Jamil, A., Jillings, C., Keloth, R., Kemmerich, N., Kemp, A., Kester, Carlos E., Kimura, M., Kondo, K., Korga, G., Kotsiopoulou, L., Koulosousas, S., Kubankin, A., Kunze, P., Kuss, M., Kuźniak, M., Kuzwa, M., La Commara, M., Lai, M., LeGuirriec, E., Leason, E., Leoni, A., Lidey, L., Lissia, M., Luzzi, L., Lychagina, O., Macfadyen, O., Machulin, I. N., Manecki, S., Manthos, I., Marasciulli, A., Margutti, G., Mari, S. M., Mariani, C., Maricic, J., Martinez, M., Martoff, C. J., Matteucci, G., Mavrokoridis, K., Mazza, E., McDonald, A. B., Merzi, S., Messina, A., Milincic, R., Minutoli, S., Mitra, A., Monroe, J., Moretti, E., Morrocchi, M., Mroz, T., Muratova, V. N., Murphy, M., Murra, M., Muscas, C., Musico, P., Nania, R., Nessi, M., Nieradka, G., Nikolopoulos, K., Nikoloudaki, E., Nowak, J., Olchanski, K., Oleinik, A., Oleynikov, V., Organtini, P., de Solrzano, A. Ortiz, Pallavicini, M., Pandola, L., Pantic, E., Paoloni, E., Papi, D., Pastuszak, G., Paternoster, G., Pegoraro, P. A., Pelczar, K., Perez, R., Pesudo, V., Piacentini, S., Pino, N., Plante, G., Pocar, A., Poehlmann, M., Pordes, S., Pralavorio, P., Preosti, E., Price, D., Puglia, S., Bazetto, M. Queiroga, Ragusa, F., Ramachers, Y., Ramirez, A., Ravinthiran, S., Razeti, M., Renshaw, A. L., Rescigno, M., Resconi, S., Retiere, F., Rignanese, L. P., Rivetti, A., Roberts, A., Roberts, C., Rogers, G., Romero, L., Rossi, M., Rubbia, A., Rudik, D., Sabia, M., Salomone, P., Samoylov, O., Sanfilippo, S., Santone, D., Santorelli, R., Santos, E. Moura, Savarese, C., Scapparone, E., Schuckman II, F. G., Scioli, G., Semenov, D. A., Sheshukov, A., Simeone, M., Skensved, P., Skorokhvatov, M. D., Smirnov, O., Smirnova, T., Smith, B., Sotnikov, A., Spadoni, F., Spangenberg, M., Stefanizzi, R., Steri, A., Stornelli, V., Stracka, S., Sulis, S., Sung, A., Sunny, C., Suvorov, Y., Szelc, A. M., Taborda, O., Tartaglia, R., Taylor, A., Taylor, J., Testera, G., Thieme, K., Thompson, A., Torres-Lara, S., Tricomi, A., Unzhakov, E. V., Van Uffelen, M., Viant, T., Viel, S., Vishneva, A., Vogelaar, R. B., Vossebeld, J., Vyas, B., Wada, M., Walczak, M., Wang, Y., Wang, H., Westerdale, S., Williams, L., Wojaczyski, R., Wojcik, M. M., Wojcik, M., Wright, T., Xie, Y., Yang, C., Yin, J., Zabihi, A., Zakhary, P., Zani, A., Zhang, Y., Zhu, T., Zichichi, A., Zuzel, G., Zykova, M. P.
DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive
Externí odkaz:
http://arxiv.org/abs/2412.18867
With the rise of foundation models, there is growing concern about their potential social impacts. Social science has a long history of studying the social impacts of transformative technologies in terms of pre-existing systems of power and how these
Externí odkaz:
http://arxiv.org/abs/2412.16355
Autor:
Hanzo, Lajos, Babar, Zunaira, Cai, Zhenyu, Chandra, Daryus, Djordjevic, Ivan B., Koczor, Balint, Ng, Soon Xin, Razavi, Mohsen, Simeone, Osvaldo
The recent advances in quantum information processing, sensing and communications are surveyed with the objective of identifying the associated knowledge gaps and formulating a roadmap for their future evolution. Since the operation of quantum system
Externí odkaz:
http://arxiv.org/abs/2412.00987
Bayesian optimization (BO) is a sequential approach for optimizing black-box objective functions using zeroth-order noisy observations. In BO, Gaussian processes (GPs) are employed as probabilistic surrogate models to estimate the objective function
Externí odkaz:
http://arxiv.org/abs/2411.17387
Over-the-air federated learning (FL), i.e., AirFL, leverages computing primitively over multiple access channels. A long-standing challenge in AirFL is to achieve coherent signal alignment without relying on expensive channel estimation and feedback.
Externí odkaz:
http://arxiv.org/abs/2411.13000
Bayesian Neural Networks (BNNs) provide superior estimates of uncertainty by generating an ensemble of predictive distributions. However, inference via ensembling is resource-intensive, requiring additional entropy sources to generate stochasticity w
Externí odkaz:
http://arxiv.org/abs/2411.07902
Inspired by biological processes, neuromorphic computing utilizes spiking neural networks (SNNs) to perform inference tasks, offering significant efficiency gains for workloads involving sequential data. Recent advances in hardware and software have
Externí odkaz:
http://arxiv.org/abs/2411.04728
This work investigates a collaborative sensing and data collection system in which multiple unmanned aerial vehicles (UAVs) sense an area of interest and transmit images to a cloud server (CS) for processing. To accelerate the completion of sensing m
Externí odkaz:
http://arxiv.org/abs/2411.02366
Sequence models have demonstrated the ability to perform tasks like channel equalization and symbol detection by automatically adapting to current channel conditions. This is done without requiring any explicit optimization and by leveraging not only
Externí odkaz:
http://arxiv.org/abs/2410.23882
Radio resource allocation often calls for the optimization of black-box objective functions whose evaluation is expensive in real-world deployments. Conventional optimization methods apply separately to each new system configuration, causing the numb
Externí odkaz:
http://arxiv.org/abs/2410.19837