Zobrazeno 1 - 10
of 25 261
pro vyhledávání: '"A., Alexandrov"'
Autor:
Bhattarai, Manish, Barron, Ryan, Eren, Maksim, Vu, Minh, Grantcharov, Vesselin, Boureima, Ismael, Stanev, Valentin, Matuszek, Cynthia, Valtchinov, Vladimir, Rasmussen, Kim, Alexandrov, Boian
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by integrating external document retrieval to provide domain-specific or up-to-date knowledge. The effectiveness of RAG depends on the relevance of retrieved documents, which
Externí odkaz:
http://arxiv.org/abs/2412.04661
Autor:
Alexandrov, Sergey, Bendriss, Khalil
Generating functions $h_r(\tau)$ of D4-D2-D0 BPS indices, appearing in Calabi-Yau compactifications of type IIA string theory and identical to rank 0 Donaldson-Thomas invariants, are known to be higher depth mock modular forms satisfying a specific m
Externí odkaz:
http://arxiv.org/abs/2411.17699
Autor:
Akimov, D. Yu., Alexandrov, I. S., Belov, V. A., Bolozdynya, A. I., Etenko, A. V., Galavanov, A. V., Gusakov, Yu. V., Khromov, A. V., Konovalov, A. M., Kornoukhov, V. N., Kovalenko, A. G., Kozlova, E. S., Kumpan, A. V., Lukyashin, A. V., Pinchuk, A. V., Razuvaeva, O. E., Rudik, D. G., Shakirov, A. V., Simakov, G. E., Sosnovstsev, V. V., Vasin, A. A.
RED-100 is a two-phase emission detector with an active volume containing 126~kg of liquid xenon. The detector was exposed to the antineutrino flux of about $1.4 \cdot 10^{13}~$cm$^{-2}$s$^{-1}$ at a distance of 19~m from the 3.1~GW Kalinin Nuclear P
Externí odkaz:
http://arxiv.org/abs/2411.18641
Autor:
Weber, Maurice, Fu, Daniel, Anthony, Quentin, Oren, Yonatan, Adams, Shane, Alexandrov, Anton, Lyu, Xiaozhong, Nguyen, Huu, Yao, Xiaozhe, Adams, Virginia, Athiwaratkun, Ben, Chalamala, Rahul, Chen, Kezhen, Ryabinin, Max, Dao, Tri, Liang, Percy, Ré, Christopher, Rish, Irina, Zhang, Ce
Large language models are increasingly becoming a cornerstone technology in artificial intelligence, the sciences, and society as a whole, yet the optimal strategies for dataset composition and filtering remain largely elusive. Many of the top-perfor
Externí odkaz:
http://arxiv.org/abs/2411.12372
Autor:
Adak, Dibyendu, Truong, Duc P., Vuchkov, Radoslav, De, Saibal, DeSantis, Derek, Roberts, Nathan V., Rasmussen, Kim Ø., Alexandrov, Boian S.
In this paper, we present a new space-time Petrov-Galerkin-like method. This method utilizes a mixed formulation of Tensor Train (TT) and Quantized Tensor Train (QTT), designed for the spectral element discretization (Q1-SEM) of the time-dependent co
Externí odkaz:
http://arxiv.org/abs/2411.04026
Autor:
Alexandrov, Victor
The article contributes to the theory of infinitesimal bendings of smooth surfaces in Euclidean 3-space. We derive a certain linear differential equation of the first order, which previously did not appear in the literature and which is satisfied by
Externí odkaz:
http://arxiv.org/abs/2410.13634
Autor:
Barron, Ryan C., Grantcharov, Ves, Wanna, Selma, Eren, Maksim E., Bhattarai, Manish, Solovyev, Nicholas, Tompkins, George, Nicholas, Charles, Rasmussen, Kim Ø., Matuszek, Cynthia, Alexandrov, Boian S.
Large Language Models (LLMs) are pre-trained on large-scale corpora and excel in numerous general natural language processing (NLP) tasks, such as question answering (QA). Despite their advanced language capabilities, when it comes to domain-specific
Externí odkaz:
http://arxiv.org/abs/2410.02721
Autor:
Zakharova, Anastasiia, Alexandrov, Dmitriy, Khodorchenko, Maria, Butakov, Nikolay, Vasilev, Alexey, Savchenko, Maxim, Grigorievskiy, Alexander
Machine learning (ML) models trained on datasets owned by different organizations and physically located in remote databases offer benefits in many real-world use cases. State regulations or business requirements often prevent data transfer to a cent
Externí odkaz:
http://arxiv.org/abs/2409.15558
Autor:
Bunne, Charlotte, Roohani, Yusuf, Rosen, Yanay, Gupta, Ankit, Zhang, Xikun, Roed, Marcel, Alexandrov, Theo, AlQuraishi, Mohammed, Brennan, Patricia, Burkhardt, Daniel B., Califano, Andrea, Cool, Jonah, Dernburg, Abby F., Ewing, Kirsty, Fox, Emily B., Haury, Matthias, Herr, Amy E., Horvitz, Eric, Hsu, Patrick D., Jain, Viren, Johnson, Gregory R., Kalil, Thomas, Kelley, David R., Kelley, Shana O., Kreshuk, Anna, Mitchison, Tim, Otte, Stephani, Shendure, Jay, Sofroniew, Nicholas J., Theis, Fabian, Theodoris, Christina V., Upadhyayula, Srigokul, Valer, Marc, Wang, Bo, Xing, Eric, Yeung-Levy, Serena, Zitnik, Marinka, Karaletsos, Theofanis, Regev, Aviv, Lundberg, Emma, Leskovec, Jure, Quake, Stephen R.
The cell is arguably the most fundamental unit of life and is central to understanding biology. Accurate modeling of cells is important for this understanding as well as for determining the root causes of disease. Recent advances in artificial intell
Externí odkaz:
http://arxiv.org/abs/2409.11654
Autor:
Zollicoffer, Geigh, Vu, Minh, Nebgen, Ben, Castorena, Juan, Alexandrov, Boian, Bhattarai, Manish
This work presents an information-theoretic examination of diffusion-based purification methods, the state-of-the-art adversarial defenses that utilize diffusion models to remove malicious perturbations in adversarial examples. By theoretically chara
Externí odkaz:
http://arxiv.org/abs/2409.08255