Zobrazeno 1 - 10
of 115 765
pro vyhledávání: '"A Yeo"'
NVIDIA's Multi-Instance GPU (MIG) is a feature that enables system designers to reconfigure one large GPU into multiple smaller GPU slices. This work characterizes this emerging GPU and evaluates its effectiveness in designing high-performance AI inf
Externí odkaz:
http://arxiv.org/abs/2411.19114
Recent approaches in Conversational Recommender Systems (CRSs) have tried to simulate real-world users engaging in conversations with CRSs to create more realistic testing environments that reflect the complexity of human-agent dialogue. Despite the
Externí odkaz:
http://arxiv.org/abs/2411.16160
We introduce a new class of neural networks designed to be convex functions of their inputs, leveraging the principle that any convex function can be represented as the supremum of the affine functions it dominates. These neural networks, inherently
Externí odkaz:
http://arxiv.org/abs/2411.12854
Autor:
Ravikumar, Deepak, Yeo, Alex, Zhu, Yiwen, Lakra, Aditya, Nagulapalli, Harsha, Ravindran, Santhosh Kumar, Suh, Steve, Dutta, Niharika, Fogarty, Andrew, Park, Yoonjae, Khushalani, Sumeet, Tarafdar, Arijit, Parekh, Kunal, Krishnan, Subru
Publikováno v:
Proceedings of the VLDB Endowment, Vol. 17, No. 7 ISSN 2150-8097, 2024
The proliferation of big data and analytic workloads has driven the need for cloud compute and cluster-based job processing. With Apache Spark, users can process terabytes of data at ease with hundreds of parallel executors. At Microsoft, we aim at p
Externí odkaz:
http://arxiv.org/abs/2411.11326
Generative retrieval has recently emerged as a new alternative of traditional information retrieval approaches. However, existing generative retrieval methods directly decode docid when a query is given, making it impossible to provide users with exp
Externí odkaz:
http://arxiv.org/abs/2411.05572
Autor:
Huang, Chien-yu, Chen, Wei-Chih, Yang, Shu-wen, Liu, Andy T., Li, Chen-An, Lin, Yu-Xiang, Tseng, Wei-Cheng, Diwan, Anuj, Shih, Yi-Jen, Shi, Jiatong, Chen, William, Chen, Xuanjun, Hsiao, Chi-Yuan, Peng, Puyuan, Wang, Shih-Heng, Kuan, Chun-Yi, Lu, Ke-Han, Chang, Kai-Wei, Yang, Chih-Kai, Ritter-Gutierrez, Fabian, Chuang, Ming To, Huang, Kuan-Po, Arora, Siddhant, Lin, You-Kuan, Yeo, Eunjung, Chang, Kalvin, Chien, Chung-Ming, Choi, Kwanghee, Hsieh, Cheng-Hsiu, Lin, Yi-Cheng, Yu, Chee-En, Chiu, I-Hsiang, Guimarães, Heitor R., Han, Jionghao, Lin, Tzu-Quan, Lin, Tzu-Yuan, Chang, Homu, Chang, Ting-Wu, Chen, Chun Wei, Chen, Shou-Jen, Chen, Yu-Hua, Cheng, Hsi-Chun, Dhawan, Kunal, Fang, Jia-Lin, Fang, Shi-Xin, Chiang, Kuan-Yu Fang, Fu, Chi An, Hsiao, Hsien-Fu, Hsu, Ching Yu, Huang, Shao-Syuan, Wei, Lee Chen, Lin, Hsi-Che, Lin, Hsuan-Hao, Lin, Hsuan-Ting, Lin, Jian-Ren, Liu, Ting-Chun, Lu, Li-Chun, Pai, Tsung-Min, Pasad, Ankita, Kuan, Shih-Yun Shan, Shon, Suwon, Tang, Yuxun, Tsai, Yun-Shao, Wei, Jui-Chiang, Wei, Tzu-Chieh, Wu, Chengxi, Wu, Dien-Ruei, Yang, Chao-Han Huck, Yang, Chieh-Chi, Yip, Jia Qi, Yuan, Shao-Xiang, Noroozi, Vahid, Chen, Zhehuai, Wu, Haibin, Livescu, Karen, Harwath, David, Watanabe, Shinji, Lee, Hung-yi
Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language i
Externí odkaz:
http://arxiv.org/abs/2411.05361
A super-resolution (SR) method for the reconstruction of Navier-Stokes (NS) flows from noisy observations is presented. In the SR method, first the observation data is averaged over a coarse grid to reduce the noise at the expense of losing resolutio
Externí odkaz:
http://arxiv.org/abs/2411.05240
This paper presents a framework for extracting georeferenced vehicle trajectories from high-altitude drone footage, addressing key challenges in urban traffic monitoring and limitations of traditional ground-based systems. We employ state-of-the-art
Externí odkaz:
http://arxiv.org/abs/2411.02136
Autor:
Jang, Hyun-June, Joung, Hyou-Arm, Shi, Xiaoao, Ding, Rui, Wagner, Justine, Tang, Erting, Zhuang, Wen, Ryu, Byunghoon, Chen, Guanmin, Yeo, Kiang-Teck Jerry, Huang, Jun, Chen, Junhong
To meet the growing demand for accurate, rapid, and cost-effective at-home clinical testing, we developed a radical-mediated enzyme assay (REEA) integrated with a paper fluidic system and electrically read by a handheld field-effect transistor (FET)
Externí odkaz:
http://arxiv.org/abs/2411.03111
Autor:
Krause, Claudius, Giannelli, Michele Faucci, Kasieczka, Gregor, Nachman, Benjamin, Salamani, Dalila, Shih, David, Zaborowska, Anna, Amram, Oz, Borras, Kerstin, Buckley, Matthew R., Buhmann, Erik, Buss, Thorsten, Cardoso, Renato Paulo Da Costa, Caterini, Anthony L., Chernyavskaya, Nadezda, Corchia, Federico A. G., Cresswell, Jesse C., Diefenbacher, Sascha, Dreyer, Etienne, Ekambaram, Vijay, Eren, Engin, Ernst, Florian, Favaro, Luigi, Franchini, Matteo, Gaede, Frank, Gross, Eilam, Hsu, Shih-Chieh, Jaruskova, Kristina, Käch, Benno, Kalagnanam, Jayant, Kansal, Raghav, Kim, Taewoo, Kobylianskii, Dmitrii, Korol, Anatolii, Korcari, William, Krücker, Dirk, Krüger, Katja, Letizia, Marco, Li, Shu, Liu, Qibin, Liu, Xiulong, Loaiza-Ganem, Gabriel, Madula, Thandikire, McKeown, Peter, Melzer-Pellmann, Isabell-A., Mikuni, Vinicius, Nguyen, Nam, Ore, Ayodele, Schweitzer, Sofia Palacios, Pang, Ian, Pedro, Kevin, Plehn, Tilman, Pokorski, Witold, Qu, Huilin, Raikwar, Piyush, Raine, John A., Reyes-Gonzalez, Humberto, Rinaldi, Lorenzo, Ross, Brendan Leigh, Scham, Moritz A. W., Schnake, Simon, Shimmin, Chase, Shlizerman, Eli, Soybelman, Nathalie, Srivatsa, Mudhakar, Tsolaki, Kalliopi, Vallecorsa, Sofia, Yeo, Kyongmin, Zhang, Rui
We present the results of the "Fast Calorimeter Simulation Challenge 2022" - the CaloChallenge. We study state-of-the-art generative models on four calorimeter shower datasets of increasing dimensionality, ranging from a few hundred voxels to a few t
Externí odkaz:
http://arxiv.org/abs/2410.21611