Zobrazeno 1 - 10
of 9 754
pro vyhledávání: '"A Poyraz"'
Publikováno v:
IEEE International Workshop on Machine Learning for Signal Processing (MLSP) 2024
This paper explores the efficacy of diffusion-based generative models as neural operators for partial differential equations (PDEs). Neural operators are neural networks that learn a mapping from the parameter space to the solution space of PDEs from
Externí odkaz:
http://arxiv.org/abs/2405.07097
Autor:
Luo, Xiaoliang, Rechardt, Akilles, Sun, Guangzhi, Nejad, Kevin K., Yáñez, Felipe, Yilmaz, Bati, Lee, Kangjoo, Cohen, Alexandra O., Borghesani, Valentina, Pashkov, Anton, Marinazzo, Daniele, Nicholas, Jonathan, Salatiello, Alessandro, Sucholutsky, Ilia, Minervini, Pasquale, Razavi, Sepehr, Rocca, Roberta, Yusifov, Elkhan, Okalova, Tereza, Gu, Nianlong, Ferianc, Martin, Khona, Mikail, Patil, Kaustubh R., Lee, Pui-Shee, Mata, Rui, Myers, Nicholas E., Bizley, Jennifer K, Musslick, Sebastian, Bilgin, Isil Poyraz, Niso, Guiomar, Ales, Justin M., Gaebler, Michael, Murty, N Apurva Ratan, Loued-Khenissi, Leyla, Behler, Anna, Hall, Chloe M., Dafflon, Jessica, Bao, Sherry Dongqi, Love, Bradley C.
Scientific discoveries often hinge on synthesizing decades of research, a task that potentially outstrips human information processing capacities. Large language models (LLMs) offer a solution. LLMs trained on the vast scientific literature could pot
Externí odkaz:
http://arxiv.org/abs/2403.03230
Autor:
Poyraz, Onur, Marttinen, Pekka
Analysis of multivariate healthcare time series data is inherently challenging: irregular sampling, noisy and missing values, and heterogeneous patient groups with different dynamics violating exchangeability. In addition, interpretability and quanti
Externí odkaz:
http://arxiv.org/abs/2311.07867
Autor:
R. Björklund, C. Vigouroux, P. Effertz, O. E. García, A. Geddes, J. Hannigan, K. Miyagawa, M. Kotkamp, B. Langerock, G. Nedoluha, I. Ortega, I. Petropavlovskikh, D. Poyraz, R. Querel, J. Robinson, H. Shiona, D. Smale, P. Smale, R. Van Malderen, M. De Mazière
Publikováno v:
Atmospheric Measurement Techniques, Vol 17, Pp 6819-6849 (2024)
Long-term, 21st century ground-based ozone measurements are crucial to study the recovery of stratospheric ozone as well as the trends of tropospheric ozone. This study is performed in the context of the LOTUS (Long-term Ozone Trends and Uncertaintie
Externí odkaz:
https://doaj.org/article/5b609a1dcd76410bb9866e627e12e94c
Autor:
K. Nilsen, R. Kivi, M. Laine, D. Poyraz, R. Van Malderen, P. von der Gathen, D. W. Tarasick, L. Thölix, N. Jepsen
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Abstract Although evidence of recovery in Antarctic stratospheric ozone has been found, evidence of recovery in Arctic ozone is still elusive, even though 25 years have passed since the peak in ozone depleting substances. Here we have used a Dynamic
Externí odkaz:
https://doaj.org/article/8976ce539eb14c12a89a35c33918d052
Trainees’ perspectives and recommendations for catalyzing the next generation of NeuroAI researchers
Autor:
Andrea I. Luppi, Jascha Achterberg, Samuel Schmidgall, Isil Poyraz Bilgin, Peer Herholz, Maximilian Sprang, Benjamin Fockter, Andrew Siyoon Ham, Sushrut Thorat, Rojin Ziaei, Filip Milisav, Alexandra M. Proca, Hanna M. Tolle, Laura E. Suárez, Paul Scotti, Helena M. Gellersen
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-7 (2024)
At this critical juncture in the development of NeuroAI, we outline challenges and training needs of junior researchers working across AI and neuroscience. We also provide advice and resources to help trainees plan their NeuroAI careers.
Externí odkaz:
https://doaj.org/article/4d00e88d4168494f95302ff60b8133c9
Publikováno v:
Perioperative Medicine, Vol 13, Iss 1, Pp 1-9 (2024)
Abstract Background Although pulse oximetry technology, which is considered the standard of care to ensure optimum oxygenation, is indispensable in clinical practice, especially in the detection of hypoxemia, it has some limitations in the detection
Externí odkaz:
https://doaj.org/article/277fbc86a8f44f469b7953936c8ba9fa
Autor:
Innan, Nouhaila, Siddiqui, Owais Ishtiaq, Arora, Shivang, Ghosh, Tamojit, Koçak, Yasemin Poyraz, Paragas, Dominic, Galib, Abdullah Al Omar, Khan, Muhammad Al-Zafar, Bennai, Mohamed
Publikováno v:
Quantum Mach. Intell. 6, 28 (2024)
Quantum State Tomography (QST) is a fundamental technique in Quantum Information Processing (QIP) for reconstructing unknown quantum states. However, the conventional QST methods are limited by the number of measurements required, which makes them im
Externí odkaz:
http://arxiv.org/abs/2308.10327
Autor:
Demirci, Murat, Poyraz, Meltem
Publikováno v:
International Journal of Manpower, 2024, Vol. 45, Issue 7, pp. 1450-1473.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/IJM-09-2023-0527
Autor:
Fatma Şayan Poyraz, Gülşah Akbaş, Dilek Duranoğlu, Serap Acar, Banu Mansuroğlu, Melike Ersöz
Publikováno v:
ACS Omega, Vol 9, Iss 39, Pp 40329-40345 (2024)
Externí odkaz:
https://doaj.org/article/95f64ac8ff034f7199563f1523c46189