Zobrazeno 1 - 10
of 7 090
pro vyhledávání: '"A Penrose"'
This article proves the following theorem, first enunciated by Roger Penrose about 70 years ago: In $\mathbb{R}P^2$, if regular conics are assigned to seven of the vertices of a combinatorial cube such that (i) conics connected by an edge are in doub
Externí odkaz:
http://arxiv.org/abs/2409.17150
Autor:
Küpper, Niclas, Penrose, Mathew D.
We investigate the behavior of large connected components in the Random Connection Model in the subcritical regime with any bounded connection function. We show that the asymptotic size of the largest component restricted to a window is the log of th
Externí odkaz:
http://arxiv.org/abs/2407.10715
Autor:
Penrose, Mathew D., Yang, Xiaochuan
Consider a random uniform sample of $n$ points in a compact region $A$ of Euclidean $d$-space, $d \geq 2$, with a smooth or (when $d=2$) polygonal boundary. Fix $k \in {\bf N}$. Let $T_{n,k}$ be the threshold $r$ at which the geometric graph on these
Externí odkaz:
http://arxiv.org/abs/2406.00647
Autor:
Penrose, Mathew D., Higgs, Frankie
Given a compact planar region $A$, let $\tau_A$ be the (random) time it takes for $A$ to be fully covered by a spatial birth-growth process in $A$ with seeds arriving as a unit-intensity Poisson point process in $A \times [0,\infty)$, where upon arri
Externí odkaz:
http://arxiv.org/abs/2405.17687
Autor:
Penrose, Mathew D., Yang, Xiaochuan
Consider a spherical Poisson Boolean model $Z$ in Euclidean $d$-space with $d \geq 2$, with Poisson intensity $t$ and radii distributed like $rY$ with $r \geq 0$ a scaling parameter and $Y$ a fixed nonnegative random variable with finite $(2d-2)$-nd
Externí odkaz:
http://arxiv.org/abs/2405.16461
Let $X_1,X_2, \ldots $ and $Y_1, Y_2, \ldots$ be i.i.d. random uniform points in a bounded domain $A \subset \mathbb{R}^2$ with smooth or polygonal boundary. Given $n,m,k \in \mathbb{N}$, define the {\em two-sample $k$-coverage threshold} $R_{n,m,k}$
Externí odkaz:
http://arxiv.org/abs/2401.03832
Autor:
Ciufolini, Ignazio, Paris, Claudio, Pavlis, Erricos C., Ries, John, Matzner, Richard, Paolozzi, Antonio, Ortore, Emiliano, Bianco, Giuseppe, Kuzmicz-Cieslak, Magdalena, Gurzadyan, Vahe, Penrose, Roger
The LAGEOS 3 (today LARES 2) space experiment was proposed in the eighties by the Physics Department and by the Center of Space Research (CSR) of the University of Texas (UT) at Austin and by the Italian Space Agency (ASI) to test and accurately meas
Externí odkaz:
http://arxiv.org/abs/2311.13268
Autor:
Ignazio Ciufolini, Claudio Paris, Erricos C. Pavlis, John C. Ries, Richard Matzner, Darpanjeet Deka, Emiliano Ortore, Magdalena Kuzmicz-Cieslak, Vahe Gurzadyan, Roger Penrose, Antonio Paolozzi, Juan Pablo Sellanes Goncalves
Publikováno v:
European Physical Journal C: Particles and Fields, Vol 84, Iss 10, Pp 1-10 (2024)
Abstract In this paper we treat some aspects of the LARES 2 space experiment to test the general relativistic phenomenon of dragging of inertial frames, or frame-dragging, in particular we discuss some aspects of its relative accuracy which can appro
Externí odkaz:
https://doaj.org/article/6931d0c30a1e410c9666d7eff9107ede
Autor:
Rebecca B Penrose, Kristi J Chavez
Publikováno v:
Communications in Information Literacy, Vol 18, Iss 2 (2024)
This article showcases an instructor–librarian collaborative model for teaching critical information literacy (CIL) skills in a higher education course by incorporating interactive workshops into a sequence of required course assignments. Using an
Externí odkaz:
https://doaj.org/article/7aad949e58b342219ce443a53af45bd4
Autor:
Penrose, Mathew D., Yang, Xiaochuan
Let $X_1,X_2, \ldots $ be independent identically distributed random points in a convex polytopal domain $A \subset \mathbb{R}^d$. Define the largest nearest neighbour link $L_n$ to be the smallest $r$ such that every point of $\mathcal X_n:=\{X_1,\l
Externí odkaz:
http://arxiv.org/abs/2301.02506