Zobrazeno 1 - 10
of 7 121
pro vyhledávání: '"A Nelsen"'
Autor:
Nelsen, Nicholas H., Stuart, Andrew M.
Publikováno v:
SIAM Review Vol. 66 No. 3 (2024) pp. 535-571
Supervised operator learning centers on the use of training data, in the form of input-output pairs, to estimate maps between infinite-dimensional spaces. It is emerging as a powerful tool to complement traditional scientific computing, which may oft
Externí odkaz:
http://arxiv.org/abs/2408.06526
Autor:
Mathews, D. G., Acharya, H., Crawford, C. B., Gervais, M. H., Jezghani, A. P., McCrea, M., Nelsen, A., Atencio, A., Birge, N., Broussard, L. J., Choi, J. H., Gonzalez, F. M., Li, H., Macsai, N., Mendelsohn, A., Mammei, R. R., Riley, G. V., Whitehead, R. A.
The Nab experiment will measure the electron-neutrino correlation and Fierz interference term in free neutron beta decay to test the Standard Model and probe Beyond the Standard Model Physics. Using National Instrument's PXIe-5171 Reconfigurable Osci
Externí odkaz:
http://arxiv.org/abs/2407.17606
Randomized algorithms exploit stochasticity to reduce computational complexity. One important example is random feature regression (RFR) that accelerates Gaussian process regression (GPR). RFR approximates an unknown function with a random neural net
Externí odkaz:
http://arxiv.org/abs/2407.00584
Autor:
Proudfoot, Benjamin C. N., Ragozzine, Darin A., Thatcher, Meagan L., Grundy, Will, Spencer, Dallin J., Alailima, Tahina M., Allen, Sawyer, Bowden, Penelope C., Byrd, Susanne, Camacho, Conner D., Campbell, Gibson H., Carlisle, Edison P., Christensen, Jacob A., Christensen, Noah K., Clement, Kaelyn, Derieg, Benjamin J., Dille, Mara K., Dorrett, Cristian, Ellefson, Abigail L., Fleming, Taylor S., Freeman, N. J., Gibson, Ethan J., Giforos, William G., Guerrette, Jacob A., Haddock, Olivia, Hammond, S. Ashton, Hampson, Zachary A., Hancock, Joshua D., Harmer, Madeline S., Henderson, Joseph R., Jensen, Chandler R., Jensen, David, Jensen, Ryleigh E., Jones, Joshua S., Kubal, Cameron C., Lunt, Jacob N., Martins, Stephanie, Matheson, McKenna, Maxwell, Dahlia, Morrell, Timothy D., Myckowiak, McKenna M., Nelsen, Maia A., Neu, Spencer T., Nuccitelli, Giovanna G., Reardon, Kayson M., Reid, Austin S., Richards, Kenneth G., Robertson, Megan R. W., Rydalch, Tanner D., Scoresby, Conner B., Scott, Ryan L., Shakespear, Zacory D., Silveira, Elliot A., Steed, Grace C., Suggs, Christiana Z., Suggs, Garrett D., Tobias, Derek M., Toole, Matthew L., Townsend, McKayla L., Vickers, Kade L., Wagner, Collin R., Wright, Madeline S., Zappala, Emma M. A.
Publikováno v:
AJ 167 144 (2024)
About 40 transneptunian binaries (TNBs) have fully determined orbits with about 10 others being solved except for breaking the mirror ambiguity. Despite decades of study almost all TNBs have only ever been analyzed with a model that assumes perfect K
Externí odkaz:
http://arxiv.org/abs/2403.12783
Autor:
Nelsen, Maia A, Ragozzine, Darin, Proudfoot, Benjamin C. N., Giforos, William G., Grundy, Will
Dynamically studying Trans-Neptunian Object (TNO) binaries allows us to measure masses and orbits. Most of the known objects appear to have only two components, except (47171) Lempo which is the single known hierarchical triple system with three simi
Externí odkaz:
http://arxiv.org/abs/2403.12786
Computationally efficient surrogates for parametrized physical models play a crucial role in science and engineering. Operator learning provides data-driven surrogates that map between function spaces. However, instead of full-field measurements, oft
Externí odkaz:
http://arxiv.org/abs/2402.06031
Autor:
NEWTON, MONIQUE, NELSEN, MATTHEW D.
Publikováno v:
RSF: The Russell Sage Foundation Journal of the Social Sciences, 2024 Jun 01. 10(3), 114-139.
Externí odkaz:
https://www.jstor.org/stable/48775335
Autor:
Thompson, Will E., Vidmar, David M., De Freitas, Jessica K., Pfeifer, John M., Fornwalt, Brandon K., Chen, Ruijun, Altay, Gabriel, Manghnani, Kabir, Nelsen, Andrew C., Morland, Kellie, Stumpe, Martin C., Miotto, Riccardo
Identifying disease phenotypes from electronic health records (EHRs) is critical for numerous secondary uses. Manually encoding physician knowledge into rules is particularly challenging for rare diseases due to inadequate EHR coding, necessitating r
Externí odkaz:
http://arxiv.org/abs/2312.06457
Autor:
Alarcon, R., Aleksandrova, A., Baeßler, S., Beck, D. H., Bhattacharya, T., Blatnik, M., Bowles, T. J., Bowman, J. D., Brewington, J., Broussard, L. J., Bryant, A., Burdine, J. F., Caylor, J., Chen, Y., Choi, J. H., Christie, L., Chupp, T. E., Cianciolo, V., Cirigliano, V., Clayton, S. M., Collett, B., Crawford, C., Dekens, W., Demarteau, M., DeMille, D., Dodson, G., Filippone, B. W., Floyd, N., Fomin, N., Fry, J, Fuyuto, K., Gardner, S., Godri, R., Golub, R., Gonzalez, F., Greene, G. L., Gudkov, V., Gupta, R., Hamblen, J., Hayen, L., Hendrus, J C., Hickerson, K., Hills, F. B., Holley, A. T., Hoogerheide, S., Hubert, M., Huffman, P. R., Imam, S. K., Ito, T. M., Jin, L., Jones, G., Komives, A., Korobkina, E., Korsch, W., Leung, K. K. H., Liu, C. -Y., Liu, K. -F., Long, J. C., Mathews, D., Mendelsohn, A., Mereghetti, E., Mohanmurthy, P., Morris, C. L., Mueller, P., Mumm, H. P., Nelsen, A., Nicholson, A., Nico, J., O'Shaughnessy, C. M., Palamure, P. A., Pastore, S., Pattie Jr., R. W., Phan, N. S., Pioquinto, J. A., Plaster, B., Počanić, D., Rahangdale, H., Redwine, R., Reid, A., Salvat, D. J., Saunders, A., Schaper, D., Seng, C. -Y., Singh, M., Shindler, A., Snow, W. M., Tang, Z., Walker-Loud, A., Wong, D. K. -T., Wietfeldt, F., Young, A. R.
Fundamental neutron physics, combining precision measurements and theory, probes particle physics at short range with reach well beyond the highest energies probed by the LHC. Significant US efforts are underway that will probe BSM CP violation with
Externí odkaz:
http://arxiv.org/abs/2308.09059
Autor:
Lanthaler, Samuel, Nelsen, Nicholas H.
Publikováno v:
Advances in Neural Information Processing Systems Vol. 36 (2023) pp. 71834-71861
This paper provides a comprehensive error analysis of learning with vector-valued random features (RF). The theory is developed for RF ridge regression in a fully general infinite-dimensional input-output setting, but nonetheless applies to and impro
Externí odkaz:
http://arxiv.org/abs/2305.17170