Zobrazeno 1 - 10
of 86 975
pro vyhledávání: '"A Matsuoka"'
Autor:
Zhuang, Chen, Chen, Peng, Liu, Xin, Yokota, Rio, Dryden, Nikoli, Endo, Toshio, Matsuoka, Satoshi, Wahib, Mohamed
Graph Convolutional Networks (GCNs) are widely used in various domains. However, training distributed full-batch GCNs on large-scale graphs poses challenges due to inefficient memory access patterns and high communication overhead. This paper present
Externí odkaz:
http://arxiv.org/abs/2411.16025
This study proposes a methodology to utilize machine learning (ML) for topology optimization of periodic lattice structures. In particular, we investigate data representation of lattice structures used as input data for ML models to improve the perfo
Externí odkaz:
http://arxiv.org/abs/2411.13869
We provide a mathematical framework for identifying the shortest path in a maze using a Grover walk, which becomes non-unitary by introducing absorbing holes. In this study, we define the maze as a network with vertices connected by unweighted edges.
Externí odkaz:
http://arxiv.org/abs/2411.12191
Autor:
Belle II Collaboration, Adachi, I., Aggarwal, L., Ahmed, H., Aihara, H., Akopov, N., Aloisio, A., Althubiti, N., Ky, N. Anh, Asner, D. M., Atmacan, H., Aushev, T., Aushev, V., Aversano, M., Ayad, R., Babu, V., Bae, H., Baghel, N. K., Bahinipati, S., Bambade, P., Banerjee, Sw., Bansal, S., Barrett, M., Bartl, M., Baudot, J., Baur, A., Beaubien, A., Becherer, F., Becker, J., Bennett, J. V., Bernlochner, F. U., Bertacchi, V., Bertemes, M., Bertholet, E., Bessner, M., Bettarini, S., Bhardwaj, V., Bhuyan, B., Bianchi, F., Bierwirth, L., Bilka, T., Biswas, D., Bobrov, A., Bodrov, D., Bolz, A., Bondar, A., Borah, J., Boschetti, A., Bozek, A., Bračko, M., Branchini, P., Briere, R. A., Browder, T. E., Budano, A., Bussino, S., Campagna, Q., Campajola, M., Cao, L., Casarosa, G., Cecchi, C., Cerasoli, J., Chang, M. -C., Chang, P., Cheaib, R., Cheema, P., Chen, C., Cheon, B. G., Chilikin, K., Chirapatpimol, K., Cho, H. -E., Cho, K., Cho, S. -J., Choi, S. -K., Choudhury, S., Cochran, J., Corona, L., Cui, J. X., Dattola, F., De La Cruz-Burelo, E., De La Motte, S. A., de Marino, G., De Nardo, G., De Pietro, G., de Sangro, R., Destefanis, M., Dey, S., Dhamija, R., Di Canto, A., Di Capua, F., Dingfelder, J., Doležal, Z., Jiménez, I. Domínguez, Dong, T. V., Dorigo, M., Dort, K., Dossett, D., Dubey, S., Dugic, K., Dujany, G., Ecker, P., Eliachevitch, M., Feichtinger, P., Ferber, T., Fillinger, T., Finck, C., Finocchiaro, G., Fodor, A., Forti, F., Frey, A., Fulsom, B. G., Gabrielli, A., Ganiev, E., Garcia-Hernandez, M., Garg, R., Gaudino, G., Gaur, V., Gaz, A., Gellrich, A., Ghevondyan, G., Ghosh, D., Ghumaryan, H., Giakoustidis, G., Giordano, R., Giri, A., Gironell, P. Gironella, Glazov, A., Gobbo, B., Godang, R., Gogota, O., Goldenzweig, P., Gradl, W., Graziani, E., Greenwald, D., Gruberová, Z., Gu, T., Guan, Y., Gudkova, K., Haide, I., Halder, S., Han, Y., Hara, T., Harris, C., Hayasaka, K., Hayashii, H., Hazra, S., Hearty, C., Hedges, M. T., Heidelbach, A., de la Cruz, I. Heredia, Villanueva, M. Hernández, Higuchi, T., Hoek, M., Hohmann, M., Hoppe, R., Horak, P., Hsu, C. -L., Humair, T., Iijima, T., Inami, K., Ipsita, N., Ishikawa, A., Itoh, R., Iwasaki, M., Jackson, P., Jacobs, W. W., Jang, E. -J., Jia, S., Jin, Y., Johnson, A., Joo, K. K., Junkerkalefeld, H., Kaleta, M., Kalita, D., Kaliyar, A. B., Kandra, J., Kang, K. H., Kang, S., Karyan, G., Kawasaki, T., Keil, F., Ketter, C., Kiesling, C., Kim, C. -H., Kim, D. Y., Kim, J. -Y., Kim, K. -H., Kim, Y. -K., Kim, Y. J., Kindo, H., Kinoshita, K., Kodyš, P., Koga, T., Kohani, S., Kojima, K., Korobov, A., Korpar, S., Kovalenko, E., Kowalewski, R., Križan, P., Krokovny, P., Kuhr, T., Kulii, Y., Kumar, D., Kumar, M., Kumara, K., Kunigo, T., Kuzmin, A., Kwon, Y. -J., Lacaprara, S., Lai, Y. -T., Lalwani, K., Lam, T., Lanceri, L., Lange, J. S., Lau, T. S., Laurenza, M., Leboucher, R., Diberder, F. R. Le, Lee, M. J., Lemettais, C., Leo, P., Levit, D., Lewis, P. M., Li, C., Li, L. K., Li, Q. M., Li, S. X., Li, W. Z., Li, Y., Li, Y. B., Liao, Y. P., Libby, J., Lin, J., Liptak, Z., Liu, M. H., Liu, Q. Y., Liu, Y., Liu, Z. Q., Liventsev, D., Longo, S., Lyu, C., Ma, Y., Madaan, C., Maggiora, M., Maharana, S. P., Maiti, R., Maity, S., Mancinelli, G., Manfredi, R., Manoni, E., Mantovano, M., Marcantonio, D., Marcello, S., Marinas, C., Martellini, C., Martens, A., Martini, A., Martinov, T., Massaccesi, L., Masuda, M., Matsuda, T., Matsuoka, K., Matvienko, D., Maurya, S. K., Maushart, M., McKenna, J. A., Mehta, R., Meier, F., Merola, M., Metzner, F., Miller, C., Mirra, M., Mitra, S., Miyabayashi, K., Mizuk, R., Mohanty, G. B., Mondal, S., Moneta, S., Moser, H. -G., Mrvar, M., Mussa, R., Nakamura, I., Nakao, M., Nakazawa, Y., Naruki, M., Natkaniec, Z., Natochii, A., Nayak, M., Nazaryan, G., Neu, M., Niebuhr, C., Niiyama, M., Nishida, S., Ogawa, S., Onishchuk, Y., Ono, H., Onuki, Y., Otani, F., Pakhlov, P., Pakhlova, G., Paoloni, E., Pardi, S., Parham, K., Park, H., Park, J., Park, K., Park, S. -H., Paschen, B., Passeri, A., Patra, S., Paul, S., Pedlar, T. K., Peruzzi, I., Peschke, R., Pestotnik, R., Piccolo, M., Piilonen, L. E., Angioni, G. Pinna, Podesta-Lerma, P. L. M., Podobnik, T., Pokharel, S., Praz, C., Prell, S., Prencipe, E., Prim, M. T., Prudiiev, I., Purwar, H., Rados, P., Raeuber, G., Raiz, S., Rauls, N., Ravindran, K., Rehman, J. U., Reif, M., Reiter, S., Remnev, M., Reuter, L., Herrmann, D. Ricalde, Ripp-Baudot, I., Rizzo, G., Robertson, S. H., Roehrken, M., Roney, J. M., Rostomyan, A., Rout, N., Sanders, D. A., Sandilya, S., Santelj, L., Sato, Y., Savinov, V., Scavino, B., Schmitt, C., Schneider, S., Schnepf, M., Schwanda, C., Schwartz, A. J., Seino, Y., Selce, A., Senyo, K., Serrano, J., Sevior, M. E., Sfienti, C., Shan, W., Sharma, C., Shen, C. P., Shi, X. D., Shillington, T., Shimasaki, T., Shiu, J. -G., Shtol, D., Shwartz, B., Sibidanov, A., Simon, F., Singh, J. B., Skorupa, J., Sobie, R. J., Sobotzik, M., Soffer, A., Sokolov, A., Solovieva, E., Song, W., Spataro, S., Spruck, B., Starič, M., Stavroulakis, P., Stefkova, S., Stroili, R., Strube, J., Sue, Y., Sumihama, M., Sumisawa, K., Sutcliffe, W., Suwonjandee, N., Svidras, H., Takahashi, M., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Thaller, A., Tittel, O., Tiwary, R., Torassa, E., Trabelsi, K., Tsaklidis, I., Ueda, I., Uglov, T., Unger, K., Unno, Y., Uno, K., Uno, S., Urquijo, P., Ushiroda, Y., Vahsen, S. E., van Tonder, R., Varvell, K. E., Veronesi, M., Vinokurova, A., Vismaya, V. S., Vitale, L., Vobbilisetti, V., Volpe, R., Vossen, A., Wach, B., Wakai, M., Wallner, S., Wang, E., Wang, M. -Z., Wang, X. L., Wang, Z., Warburton, A., Watanabe, M., Watanuki, S., Wessel, C., Won, E., Xu, X. P., Yabsley, B. D., Yamada, S., Yan, W., Yang, S. B., Yelton, J., Yin, J. H., Yook, Y. M., Yoshihara, K., Yuan, C. Z., Yuan, J., Zani, L., Zeng, F., Zhang, B., Zhilich, V., Zhou, J. S., Zhou, Q. D., Zhukova, V. I., Žlebčík, R.
We present measurements of $B \to K{}^{*}(892)\gamma$ decays using $365\,{\rm fb}^{-1}$ of data collected from 2019 to 2022 by the Belle~II experiment at the SuperKEKB asymmetric-energy $e^+e^-$ collider. The data sample contains $(387 \pm 6) \times
Externí odkaz:
http://arxiv.org/abs/2411.10127
Autor:
Iwata, Yuhei, Akimoto, Masanori, Matsuoka, Tomoki, Maeda, Keiichi, Yonekura, Yoshinori, Tominaga, Nozomu, Moriya, Takashi J., Fujisawa, Kenta, Niinuma, Kotaro, Yoon, Sung-Chul, Lee, Jae-Joon, Jung, Taehyun, Byun, Do-Young
We report on radio follow-up observations of the nearby Type II supernova, SN 2023ixf, spanning from 1.7 to 269.9 days after the explosion, conducted using three very long baseline interferometers (VLBIs), which are the Japanese VLBI Network (JVN), t
Externí odkaz:
http://arxiv.org/abs/2411.07542
Autor:
Iqbal, Mohsin, Lyons, Anasuya, Lo, Chiu Fan Bowen, Tantivasadakarn, Nathanan, Dreiling, Joan, Foltz, Cameron, Gatterman, Thomas M., Gresh, Dan, Hewitt, Nathan, Holliman, Craig A., Johansen, Jacob, Neyenhuis, Brian, Matsuoka, Yohei, Mills, Michael, Moses, Steven A., Siegfried, Peter, Vishwanath, Ashvin, Verresen, Ruben, Dreyer, Henrik
The development of programmable quantum devices can be measured by the complexity of manybody states that they are able to prepare. Among the most significant are topologically ordered states of matter, which enable robust quantum information storage
Externí odkaz:
http://arxiv.org/abs/2411.04185
Autor:
Orlando, S., Greco, E., Hirai, R., Matsuoka, T., Miceli, M., Nagataki, S., Ono, M., Chen, K. -J., Milisavljevic, D., Patnaude, D., Bocchino, F., Elias-Rosa, N.
We investigate SN 2014C using three-dimensional hydrodynamic modeling, focusing on its early interaction with dense circumstellar medium (CSM). Our objective is to uncover the pre-supernova (SN) CSM structure and constrain the progenitor star's mass-
Externí odkaz:
http://arxiv.org/abs/2410.17699
Autor:
Zhu, Chenghao, Harikane, Yuichi, Ouchi, Masami, Ono, Yoshiaki, Onodera, Masato, Tang, Shenli, Isobe, Yuki, Matsuoka, Yoshiki, Kawaguchi, Toshihiro, Umeda, Hiroya, Nakajima, Kimihiko, Liang, Yongming, Xu, Yi, Zhang, Yechi, Sun, Dongsheng, Shimasaku, Kazuhiro, Greene, Jenny, Iwasawa, Kazushi, Kohno, Kotaro, Nagao, Tohru, Schulze, Andreas, Shibuya, Takatoshi, Hilmi, Miftahul, Schramm, Malte
We present deep Subaru/FOCAS spectra for two extreme emission line galaxies (EELGs) at $z\sim 1$ with strong {\sc[Oiii]}$\lambda$5007 emission lines, exhibiting equivalent widths (EWs) of $2905^{+946}_{-578}$ \AA\ and $2000^{+188}_{-159}$ \AA, compar
Externí odkaz:
http://arxiv.org/abs/2410.12198
Autor:
Matsuoka, Yoshiki
In this paper, the Yukawa coupling constant of a possible newly discovered top quark is predicted. For this purpose, this paper considers a pseudo scalar mediating top quarks. This new Yukawa coupling is used as a channel to decay into a top quark pa
Externí odkaz:
http://arxiv.org/abs/2410.04672
Autor:
Matsuoka, Riona, Matsumoto, Hiroki, Yoshida, Takahiro, Watanabe, Tomohiro, Kondo, Ryoma, Hisano, Ryohei
Publikováno v:
Proceedings of Jinmoncon 2024, IPSJ SIG Computers and the Humanities
Written texts reflect an author's perspective, making the thorough analysis of literature a key research method in fields such as the humanities and social sciences. However, conventional text mining techniques like sentiment analysis and topic model
Externí odkaz:
http://arxiv.org/abs/2409.11032