Zobrazeno 1 - 10
of 30
pro vyhledávání: '"A M Petrunin"'
Autor:
N. D. Lebedeva, A. M. Petrunin
Publikováno v:
Siberian Mathematical Journal. 64:624-628
Graph comparison is a certain type of condition on metric space encoded by a finite graph. We show that any nontrivial graph comparison implies one of Alexandrov's comparisons. The proof gives a complete description of graphs with trivial graph compa
Publikováno v:
Mathematical Notes. 112:451-457
Autor:
F. K. Teteluytina, L. M. Shirobokova, I. V. Kondrokhina, E. G. Butolin, M. N. Korotkova, D. A. Malmygin, P. M. Petrunin, R. R. Valiev
Publikováno v:
Perm Medical Journal. 39:11-18
Objective. To detect the features of connective tissue metabolism in healthy women during pregnancy. Materials and methods. The study of the connective tissue components was conducted at the terms of 1516 weeks, 2024 weeks as well as before the labor
Publikováno v:
Russian Meteorology and Hydrology. 47:523-529
Autor:
A. A. Bychkov, A. M. Petrunin, A. V. Chastukhin, S. V. Antonov, S. M. Dvoeglazov, N. A. Platonov
Publikováno v:
Russian Meteorology and Hydrology. 47:535-541
Publikováno v:
Sbornik: Mathematics. 213:412-442
We obtain a complete description of the fieldsthat are extensions ofof degree at mostand the cubic polynomialssuch that the expansion ofinto a continued fraction in the field of formal power seriesis periodic. We prove a finiteness theorem for cubic
Publikováno v:
Doklady Mathematics. 104:258-263
Autor:
Alexander N. Gumeniuk, Irina S. Polyanskikh, Semen M. Petrunin, Filipp E. Shevchenko, Grigory N. Pervushin
Publikováno v:
Vestnik MGSU, Vol 16, Iss 6, Pp 688-697 (2021)
Introduction. The adjustability of electrical properties of materials, that have hydraulic setting characteristics, has been studied over the last decades. It is emphasized that any change in electrical properties, triggered by various additives, cau
Publikováno v:
Doklady Mathematics. 102:487-492
We obtain a complete description of cubic polynomials f over algebraic number fields $$\mathbb{K}$$ of degree $$3$$ over $$\mathbb{Q}$$ for which the continued fraction expansion of $$\sqrt f $$ in the field of formal power series $$\mathbb{K}((x))$$
Publikováno v:
Doklady Mathematics. 102:288-292
We obtain a complete description of fields $$\mathbb{K}$$ that are quadratic extensions of $$\mathbb{Q}$$ and of cubic polynomials $$f \in \mathbb{K}[x]$$ for which a continued fraction expansion of $$\sqrt f $$ in the field of formal power series $$