Zobrazeno 1 - 10
of 34
pro vyhledávání: '"A L Ragozin"'
Publikováno v:
Doklady Earth Sciences. 507:S365-S374
Autor:
Pavel A. Abramov, M. A. Belyanchikov, Dmitry A. Fursenko, Boris Gorshunov, V. G. Thomas, A. L. Ragozin
Publikováno v:
Crystal Growth & Design. 21:2283-2291
This article reports on the uneven distribution of water molecules of first (D2O-I) and second (D2O-II) types in a D2O-containing beryl crystal grown hydrothermally on a non-singularly oriented fla...
Publikováno v:
Geoscience Frontiers. 13:101455
Publikováno v:
Applied and Numerical Harmonic Analysis ISBN: 9783030696368
We study min-max affine approximants of a continuous convex or concave function \(f:\Delta \subseteq \mathbb R^k\xrightarrow {} \mathbb R\), where Δ is a convex compact subset of \(\mathbb R^k\). In the case when Δ is a simplex, we prove that there
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b8d5de21d287f2b73cc292c79d6d792c
https://doi.org/10.1007/978-3-030-69637-5_19
https://doi.org/10.1007/978-3-030-69637-5_19
Spectroscopic features of electron-irradiated diamond crystals from the Mir kimberlite pipe, Yakutia
Autor:
Mariana I. Rakhmanova, Andrey Yu. Komarovskikh, Alexey L. Ragozin, Olga P. Yuryeva, Vladimir A. Nadolinny
Publikováno v:
Diamond and Related Materials. 126:109057
Publikováno v:
Precambrian Research. 369:106512
Autor:
Dmitry A. Zedgenizov, Yuri N. Palyanov, Igor N. Kupriyanov, Vladislav S. Shatsky, Vladimir A. Nadolinny, Aleksey L. Ragozin, Mariana I. Rakhmanova, Olga P. Yuryeva
Publikováno v:
European Journal of Mineralogy. 24:645-650
Comprehensive studies of diamond crystals with a low nitrogen concentration from the placer deposits and kimberlite pipes of Yakutia have facilitated the detection of three titanium-nitrogen-related centers: OK1/S1, N3/440.3 nm and NU1/485 nm in the
Publikováno v:
Journal of Fourier Analysis and Applications. 16:813-839
Given $\mathcal{X}$ , some measurable subset of Euclidean space, one sometimes wants to construct a finite set of points, $\mathcal{P}\subset\mathcal {X}$ , called a design, with a small energy or discrepancy. Here it is shown that these two measures
Autor:
Jeremy Levesley, David L. Ragozin
Publikováno v:
Advances in Computational Mathematics. 27:237-246
Pointwise error estimates for approximation on compact homogeneous manifolds using radial kernels are presented. For a \({\mathcal C}^{2r}\) positive definite kernel κ the pointwise error at x for interpolation by translates of κ goes to 0 like ρr
Publikováno v:
SIAM Journal on Mathematical Analysis. 32:1272-1310
As is now well known for some basic functions $\phi$, hierarchical and fast multipole-like methods can greatly reduce the storage and operation counts for fitting and evaluating radial basis functions. In particular, for spline functions of the form