Zobrazeno 1 - 10
of 101
pro vyhledávání: '"A G Magner"'
Publikováno v:
Âderna Fìzika ta Energetika, Vol 24, Iss 3, Pp 175-192 (2023)
Level density ρ is derived for a finite system with strongly interacting nucleons at a given energy E, neutron N, and proton Z particle numbers, projection of the angular momentum M, and other integrals of motion, within the semiclassical periodic-o
Externí odkaz:
https://doaj.org/article/6bae6bef6d0a48fa8be398a6d84bd09c
Autor:
A. I. Levon, A. G. Magner
Publikováno v:
Âderna Fìzika ta Energetika, Vol 20, Iss 2, Pp 111-125 (2019)
A new statistical interpretation of the nuclear collective states is suggested and applied to analysis of states, found recently in rare earths and actinide nuclei by the two-neutron transfer reactions, in terms of the nearest neighbor-spacing distri
Externí odkaz:
https://doaj.org/article/99757b6a96cf4510a0626e64e1168a52
Publikováno v:
Âderna Fìzika ta Energetika, Vol 8, Iss 1(19), Pp 17-22 (2018)
The collective rotation motion is described within the local approximation of the semiclassical Gutzwiller trajectory approach to the response function theory through the cranking model. It is shown that the smooth local part of the moment of inert
Externí odkaz:
https://doaj.org/article/cd19545a8f6a433bafcfeee3cd31e5ab
Publikováno v:
Physical Review C, 107(2):024610. AMER PHYSICAL SOC
The equation of state with quantum statistics corrections is used for particle number fluctuations $\omega$ of isotopically symmetric nuclear matter with interparticle van der Waals and Skyrme local density interactions. The fluctuations, $\omega\pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c386d207138574c68bfe1fa666c0b484
Publikováno v:
Âderna Fìzika ta Energetika, Vol 13, Iss 4, Pp 333-339 (2012)
The isovector particle densities and surface tension coefficients for the average binding energy in the approximation of a sharp edge proton-neutron asymmetric nucleus are used for analytical calculations of its neutron skin and isovector stiffness c
Externí odkaz:
https://doaj.org/article/9988166123314d25ab22184560649b8f
Equation of state with quantum statistics corrections is derived for systems of the Fermi and Bose particles by using their van der Waals (vdW) and effective density-dependent Skyrme mean-field interactions. First few orders of these corrections over
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::306544c8daa9bf63bf49255d192f29c9
http://arxiv.org/abs/2112.13704
http://arxiv.org/abs/2112.13704
Publikováno v:
Âderna Fìzika ta Energetika, Vol 11, Iss 3, Pp 239-245 (2010)
The order-to-chaos transition in the dynamics of independent classical particles gas was studied by means of the numerical simulations. The excitation of the gas for containers whose surfaces are rippled according to Legendre polynomials P2 , P3, P4
Externí odkaz:
https://doaj.org/article/415a72dbb7344dfcaf44ec9cd271308f
Autor:
A. G. Magner
Publikováno v:
Âderna Fìzika ta Energetika, Vol 11, Iss 3, Pp 227-232 (2010)
We derived the semiclassical trace formulas for the level density as sums over periodic-orbit families and isolated orbits within the improved stationary phase method. Averaged level-density shell corrections and shell-structure energies are continuo
Externí odkaz:
https://doaj.org/article/23fa509d317c4da5bae811c5a0d6cd10
Publikováno v:
Âderna Fìzika ta Energetika, Vol 9, Iss 2(24), Pp 7-12 (2008)
For low-lying collective excitations we derived the inertia within the semiclassical Gutzwiller approach to the onebody Green’s function at lowest orders in h. The excitation energies, reduced probabilities and energy-weighted sum rules are in agre
Externí odkaz:
https://doaj.org/article/4a443c969c3f4de19276f0aa4328839c
Level density $\rho(E,N,Z)$ is derived for a nuclear system with a given energy $E$, neutron $N$, and proton $Z$ particle numbers, within the semiclassical extended Thomas-Fermi and periodic-orbit theory beyond the Fermi-gas saddle-point method. We o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::86fca18affb2666928a4ba91d293ae50