Zobrazeno 1 - 10
of 108
pro vyhledávání: '"A Edoukou"'
Publikováno v:
In Journal of Information Security and Applications December 2020 55
Publikováno v:
In Journal of Information Security and Applications April 2019 45:52-60
Let $\mathcal{Q}_1$ and $\mathcal{Q}_2$ be two arbitrary quadrics with no common hyperplane in ${\mathbb{P}}^n(\mathbb{F}_q)$. We give the best upper bound for the number of points in the intersection of these two quadrics. Our result states that $|
Externí odkaz:
http://arxiv.org/abs/0907.4556
We study the functional codes of order $h$ defined by G. Lachaud on $\mathcal{X} \subset {\mathbb{P}}^n(\mathbb{F}_q)$ a non-degenerate Hermitian variety. We give a condition of divisibility of the weights of the codewords. For $\mathcal{X}$ a non-de
Externí odkaz:
http://arxiv.org/abs/0907.4548
We study the small weight codewords of the functional code C_2(Q), with Q a non-singular quadric of PG(N,q). We prove that the small weight codewords correspond to the intersections of Q with the singular quadrics of PG(N,q) consisting of two hyperpl
Externí odkaz:
http://arxiv.org/abs/0901.4205
Autor:
Edoukou, Frederic A. B.
We study the functional codes of second order defined by G. Lachaud on $\mathcal{X} \subset {\mathbb{P}}^4(\mathbb{F}_q)$ a quadric of rank($\mathcal{X}$)=3,4,5 or a non-degenerate hermitian variety. We give some bounds for %$# \mathcal{X}_{Z(\mathca
Externí odkaz:
http://arxiv.org/abs/math/0612229
Autor:
Edoukou, Frederic A. B.
We study the functional codes $C_h(X)$ defined by G. Lachaud in $\lbrack 10 \rbrack$ where $X \subset {\mathbb{P}}^N$ is an algebraic projective variety of degree $d$ and dimension $m$. When $X$ is a hermitian surface in $PG(3,q)$, S{\o}rensen in \lb
Externí odkaz:
http://arxiv.org/abs/math/0612231
Autor:
Edoukou, Frederic A. B.
We study the functional codes $C_2(X)$ defined on a projective variety $X$, in the case where $X \subset {\mathbb{P}}^3$ is a non-degenerate hermitian surface. We first give some bounds for $# X_{Z(\mathcal{Q})}(\mathbb{F}_{q})$, which are better tha
Externí odkaz:
http://arxiv.org/abs/math/0512476
Autor:
Edoukou, Frederic A. B.
We study the functional codes $C_2(X)$ defined on projective varieties $X$, in the case where $X\subset \mathbb{P}^3$ is a 1-degenerate quadric or a non-degenerate quadric (hyperbolic or elliptic). We find the minimum distance of these codes, the sec
Externí odkaz:
http://arxiv.org/abs/math/0511679
Autor:
Coulibaly, Sifolo S., Edoukou, Flavien Ettien, Kouassi, Kouadio I., Barsan, N., Nedeff, V., Bi Zoro, I.A.
Publikováno v:
In Heliyon December 2018 4(12)