Zobrazeno 1 - 10
of 13 075
pro vyhledávání: '"A A, Feĭgin"'
Autor:
Polishchuk, Alexander, Rains, Eric
We prove that for every relatively prime pair of integers $(d,r)$ with $r>0$, there exists an exceptional pair $({\mathcal O},V)$ on any del Pezzo surface of degree 4, such that $V$ is a bundle of rank $r$ and degree $d$. As an application, we prove
Externí odkaz:
http://arxiv.org/abs/2407.19307
Autor:
Gorodetsky, Leonid, Markarian, Nikita
The main result of the paper is a description of conormal Lie algebras of Feigin-Odesskii Poisson structures. In order to obtain it we introduce a new variant of a definition of a Feigin-Odesskii Poisson structure: we define it using a differential o
Externí odkaz:
http://arxiv.org/abs/2403.02805
Autor:
Kawanoue, Hiraku
We settled a conjecture of Feigin, Wang and Yoshinaga, appeared in the preprint "Integral expressions for derivations of multiarrangements" (arXiv: 2309.01287v2).
Externí odkaz:
http://arxiv.org/abs/2311.09045
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Dumanski, Ilya
We propose a geometric realization of the Feigin-Loktev fusion product of graded cyclic modules over the current algebra. This allows us to compute it in several new cases. We also relate the Feigin-Loktev fusion product to the convolution of pervers
Externí odkaz:
http://arxiv.org/abs/2308.05268
Autor:
Schefers, Kendric
Let $\boldsymbol{Z}$ be a derived global complete intersection over $\mathbb{C}$. We compute the periodic cyclic homology of the category of ind-coherent sheaves with prescribed singular support on $\boldsymbol{Z}$ in terms of the microlocal homology
Externí odkaz:
http://arxiv.org/abs/2310.11045
Autor:
Fasquel, Justine, Nakatsuka, Shigenori
We study the representation theory of the subregular W-algebra $\mathcal{W}^k(\mathfrak{so}_{2n+1},f_{sub})$ of type B and the principal W-superalgebra $\mathcal{W}^\ell(\mathfrak{osp}_{2|2n})$, which are related by an orthosymplectic analogue of Fei
Externí odkaz:
http://arxiv.org/abs/2307.14574
Autor:
Hua, Zheng, Polishchuk, Alexander
The derived moduli stack of complexes of vector bundles on a Gorenstein Calabi-Yau curve admits a 0-shifted Poisson structure. Feigin-Odesskii Poisson varieties are examples of such moduli spaces over complex elliptic curves. Using moduli stack of ch
Externí odkaz:
http://arxiv.org/abs/2306.14719
Publikováno v:
Adv. Math.448(2024), Paper No. 109717
We study the affine analogue $\mathrm{FT}_p(\mathfrak{sl}_2)$ of the triplet algebra. We show that $\mathrm{FT}_p(\mathfrak{sl}_2)$ is quasi-lisse and the associated variety is the nilpotent cone of $\mathfrak{sl}_2$. We realize $\mathrm{FT}_p(\mathf
Externí odkaz:
http://arxiv.org/abs/2306.13568
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.