Zobrazeno 1 - 10
of 51
pro vyhledávání: '"A, Toulisse"'
We provide a full classification of complete maximal $p$-dimensional spacelike submanifolds in the pseudo-hyperbolic space $\mathbf{H}^{p,q}$, and we study its applications to Teichm\"uller theory and to the theory of Anosov representations of hyperb
Externí odkaz:
http://arxiv.org/abs/2305.15103
Autor:
Collier, Brian, Toulisse, Jérémy
The space $\mathbf{H}^{4,2}$ of vectors of norm -1 in $\mathbb{R}^{4,3}$ has a natural pseudo-Riemannian metric and a compatible almost complex structure. The group of automorphisms of both of these structures is the split real form $G_2'$. In this p
Externí odkaz:
http://arxiv.org/abs/2302.11516
Autor:
Labourie, François, Toulisse, Jérémy
We study in this paper quasiperiodic maximal surfaces in pseudo-hyperbolic spaces and show that they are characterised by a curvature condition, Gromov hyperbolicity or conformal hyperbolicity. We show that the limit curves of these surfaces in the E
Externí odkaz:
http://arxiv.org/abs/2010.05704
We define and prove the existence of unique solutions of an asymptotic Plateau problem for spacelike maximal surfaces in the pseudo-hyperbolic space of signature (2, n): the boundary data is given by loops on the boundary at infinity of the pseudo-hy
Externí odkaz:
http://arxiv.org/abs/2006.12190
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Tholozan, Nicolas, Toulisse, Jérémy
Publikováno v:
Ãpijournal de Géométrie Algébrique, Volume 5 (April 19, 2021) epiga:5894
We prove that some relative character varieties of the fundamental group of a punctured sphere into the Hermitian Lie groups $\mathrm{SU}(p,q)$ admit compact connected components. The representations in these components have several counter-intuitive
Externí odkaz:
http://arxiv.org/abs/1811.01603
Autor:
Toulisse, Jeremy
These notes are an extended version of a talk given by the author in the seminar "Theorie Spectrale et Geometrie" at the Institut Fourier in No- vember 2016. We present here some aspects of a work in collaboration with B. Collier and N. Tholozan (arX
Externí odkaz:
http://arxiv.org/abs/1709.06197
Publikováno v:
Duke Math. J. 168, no. 15 (2019), 2873-2949
In this paper, we study the geometric and dynamical properties of maximal representations of surface groups into Hermitian Lie groups of rank 2. Combining tools from Higgs bundle theory, the theory of Anosov representations, and pseudo-Riemannian geo
Externí odkaz:
http://arxiv.org/abs/1702.08799
Autor:
Labourie, François1 (AUTHOR), Toulisse, Jérémy1 (AUTHOR) jtoulisse@univ-cotedazur.fr
Publikováno v:
Inventiones Mathematicae. Jul2023, Vol. 233 Issue 1, p81-168. 88p.
Autor:
Toulisse, Jérémy
We prove the existence of a minimal diffeomorphism isotopic to the identity between two hyperbolic cone surfaces $(\Sigma,g_1)$ and $(\Sigma,g_2)$ when the cone angles of $g_1$ and $g_2$ are different and smaller than $\pi$. When the cone angles of $
Externí odkaz:
http://arxiv.org/abs/1411.2656