Zobrazeno 1 - 10
of 146
pro vyhledávání: '"A, Mihula"'
We establish an approach to trace inequalities for potential-type operators based on an appropriate modification of an interpolation theorem due to Calder\'on. We develop a general theoretical tool for establishing boundedness of notoriously difficul
Externí odkaz:
http://arxiv.org/abs/2407.03986
We develop a new functional-analytic technique for investigating the degree of noncompactness of an operator defined on a quasinormed space and taking values in a Marcinkiewicz space. The main result is a general principle from which it can be derive
Externí odkaz:
http://arxiv.org/abs/2404.04694
We develop a new method suitable for establishing lower bounds on the ball measure of noncompactness of operators acting between considerably general quasinormed function spaces. This new method removes some of the restrictions oft-presented in the p
Externí odkaz:
http://arxiv.org/abs/2402.01250
Optimal weighted Sobolev-Lorentz embeddings with homogeneous weights in open convex cones are established, with the exact value of the optimal constant. These embeddings are non-compact, and this paper investigates the structure of their non-compactn
Externí odkaz:
http://arxiv.org/abs/2307.03127
Autor:
Mihula, Zdeněk
We find the optimal function norm on the left-hand side of the $m$th order Sobolev type inequality $\|u\|_{Y(\mathbb{H}^n)} \leq C \|\nabla_g^m u\|_{X(\mathbb{H}^n)}$ in the $n$-dimensional hyperbolic space $\mathbb{H}^n$, $1\leq m < n$. The optimal
Externí odkaz:
http://arxiv.org/abs/2305.06797
Publikováno v:
J. Funct. Anal., 287(2):110454, 2024
We characterize the rearrangement-invariant hull, with respect to a given measure $\mu$, of weighted Lebesgue spaces. The solution leads us to first consider when this space is contained in the sum of $(L^1 + L^\infty)(R, \mu)$ and the final conditio
Externí odkaz:
http://arxiv.org/abs/2303.13990
Autor:
Lang, Jan, Mihula, Zdeněk
Publikováno v:
J. Funct. Anal., 284(10):109880, 2023
The structure of non-compactness of optimal Sobolev embeddings of $m$-th order into the class of Lebesgue spaces and into that of all rearrangement-invariant function spaces is quantitatively studied. Sharp two-sided estimates of Bernstein numbers of
Externí odkaz:
http://arxiv.org/abs/2211.07282
We give a new characterization of a continuous embedding between two function spaces of type $G\Gamma$. Such spaces are governed by functionals of type $$ \|f\|_{G\Gamma(r,q;w,\delta)} := \left(\int_{0}^{L} \left( \frac1{\Delta(t)} \int_0^t f^*(s)^r
Externí odkaz:
http://arxiv.org/abs/2210.12988
Autor:
Pietrasanta, Carlo, Carlosama, Carolina, Lizier, Michela, Fornasa, Giulia, Jost, Tanja Rezzonico, Carloni, Sara, Giugliano, Silvia, Silvestri, Alessandra, Brescia, Paola, De Ponte Conti, Benedetta, Braga, Daniele, Mihula, Martin, Morosi, Lavinia, Bernardinello, Alessandro, Ronchi, Andrea, Martano, Giuseppe, Mosca, Fabio, Penna, Giuseppe, Grassi, Fabio, Pugni, Lorenza, Rescigno, Maria
Publikováno v:
In Cell Host & Microbe 11 December 2024 32(12):2178-2194
Publikováno v:
Mediterr. J. Math. 20, Article Number 113 (2023)
An equivalent expression of Orlicz modulars in terms of measure of level sets of difference quotients is established. The result in a sense complements the famous Maz'ya-Shaposhnikova formula for the fractional Gagliardo-Slobodeckij seminorm and its
Externí odkaz:
http://arxiv.org/abs/2204.13328