Zobrazeno 1 - 10
of 27 716
pro vyhledávání: '"A, Martín Martín"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wang, Zizhao, Hu, Jiaheng, Chuck, Caleb, Chen, Stephen, Martín-Martín, Roberto, Zhang, Amy, Niekum, Scott, Stone, Peter
Unsupervised skill discovery carries the promise that an intelligent agent can learn reusable skills through autonomous, reward-free environment interaction. Existing unsupervised skill discovery methods learn skills by encouraging distinguishable be
Externí odkaz:
http://arxiv.org/abs/2410.18416
Many robot manipulation tasks require active or interactive exploration behavior in order to be performed successfully. Such tasks are ubiquitous in embodied domains, where agents must actively search for the information necessary for each stage of a
Externí odkaz:
http://arxiv.org/abs/2410.18964
A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultane
Externí odkaz:
http://arxiv.org/abs/2410.11251
To operate at a building scale, service robots must perform very long-horizon mobile manipulation tasks by navigating to different rooms, accessing different floors, and interacting with a wide and unseen range of everyday objects. We refer to these
Externí odkaz:
http://arxiv.org/abs/2410.06237
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hsu, Cheng-Chun, Abbatematteo, Ben, Jiang, Zhenyu, Zhu, Yuke, Martín-Martín, Roberto, Biswas, Joydeep
Sequentially interacting with articulated objects is crucial for a mobile manipulator to operate effectively in everyday environments. To enable long-horizon tasks involving articulated objects, this study explores building scene-level articulation m
Externí odkaz:
http://arxiv.org/abs/2409.16473
Autor:
Hu, Jiaheng, Hendrix, Rose, Farhadi, Ali, Kembhavi, Aniruddha, Martin-Martin, Roberto, Stone, Peter, Zeng, Kuo-Hao, Ehsani, Kiana
In recent years, the Robotics field has initiated several efforts toward building generalist robot policies through large-scale multi-task Behavior Cloning. However, direct deployments of these policies have led to unsatisfactory performance, where t
Externí odkaz:
http://arxiv.org/abs/2409.16578