Zobrazeno 1 - 10
of 40 261
pro vyhledávání: '"A, Kalra"'
Autor:
MicroBooNE collaboration, Abratenko, P., Aldana, D. Andrade, Arellano, L., Asaadi, J., Ashkenazi, A., Balasubramanian, S., Baller, B., Barnard, A., Barr, G., Barrow, D., Barrow, J., Basque, V., Bateman, J., Rodrigues, O. Benevides, Berkman, S., Bhat, A., Bhattacharya, M., Bishai, M., Blake, A., Bogart, B., Bolton, T., Brunetti, M. B., Camilleri, L., Caratelli, D., Cavanna, F., Cerati, G., Chappell, A., Chen, Y., Conrad, J. M., Convery, M., Cooper-Troendle, L., Crespo-Anadon, J. I., Cross, R., Del Tutto, M., Dennis, S. R., Detje, P., Diurba, R., Djurcic, Z., Duffy, K., Dytman, S., Eberly, B., Englezos, P., Ereditato, A., Evans, J. J., Fang, C., Fleming, B. T., Foreman, W., Franco, D., Furmanski, A. P., Gao, F., Garcia-Gamez, D., Gardiner, S., Ge, G., Gollapinni, S., Gramellini, E., Green, P., Greenlee, H., Gu, L., Gu, W., Guenette, R., Guzowski, P., Hagaman, L., Handley, M. D., Hen, O., Hilgenberg, C., Horton-Smith, G. A., Hussain, A., Irwin, B., Ismail, M. S., James, C., Ji, X., Jo, J. H., Johnson, R. A., Jwa, Y. J., Kalra, D., Karagiorgi, G., Ketchum, W., Kirby, M., Kobilarcik, T., Lane, N., Li, J. -Y., Li, Y., Lin, K., Littlejohn, B. R., Liu, L., Louis, W. C., Luo, X., Mahmud, T., Mariani, C., Marsden, D., Marshall, J., Martinez, N., Caicedo, D. A. Martinez, Martynenko, S., Mastbaum, A., Mawby, I., McConkey, N., Mellet, L., Mendez, J., Micallef, J., Mistry, K., Mohayai, T., Mogan, A., Mooney, M., Moor, A. F., Moore, C. D., Lepin, L. Mora, Moudgalya, M. M., Babu, S. Mulleria, Naples, D., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nguyen, C., Nowak, J., Oza, N., Palamara, O., Pallat, N., Paolone, V., Papadopoulou, A., Papavassiliou, V., Parkinson, H., Pate, S. F., Patel, N., Pavlovic, Z., Piasetzky, E., Pletcher, K., Pophale, I., Qian, X., Raaf, J. L., Radeka, V., Rafique, A., Reggiani-Guzzo, M., Rondon, J. Rodriguez, Rosenberg, M., Ross-Lonergan, M., Safa, I., Schmitz, D. W., Schukraft, A., Seligman, W., Shaevitz, M. H., Sharankova, R., Shi, J., Snider, E. L., Soderberg, M., Soldner-Rembold, S., Spitz, J., Stancari, M., John, J. St., Strauss, T., Szelc, A. M., Taniuchi, N., Terao, K., Thorpe, C., Torbunov, D., Totani, D., Toups, M., Trettin, A., Tsai, Y. -T., Tyler, J., Uchida, M. A., Usher, T., Viren, B., Wang, J., Weber, M., Wei, H., White, A. J., Wolbers, S., Wongjirad, T., Wospakrik, M., Wresilo, K., Wu, W., Yandel, E., Yang, T., Yates, L. E., Yu, H. W., Zeller, G. P., Zennamo, J., Zhang, C.
This Letter presents an investigation of low-energy electron-neutrino interactions in the Fermilab Booster Neutrino Beam by the MicroBooNE experiment, motivated by the excess of electron-neutrino-like events observed by the MiniBooNE experiment. This
Externí odkaz:
http://arxiv.org/abs/2412.14407
Autor:
Mahmood, R., Wong, K. C. L., Reyes, D. M., D'Souza, N., Shi, L., Wu, J., Kaviani, P., Kalra, M., Wang, G., Yan, P., Syeda-Mahmood, T.
With the emergence of large-scale vision-language models, realistic radiology reports may be generated using only medical images as input guided by simple prompts. However, their practical utility has been limited due to the factual errors in their d
Externí odkaz:
http://arxiv.org/abs/2412.02177
Autor:
Mahmood, Razi, Yan, Pingkun, Reyes, Diego Machado, Wang, Ge, Kalra, Mannudeep K., Kaviani, Parisa, Wu, Joy T., Syeda-Mahmood, Tanveer
Several evaluation metrics have been developed recently to automatically assess the quality of generative AI reports for chest radiographs based only on textual information using lexical, semantic, or clinical named entity recognition methods. In thi
Externí odkaz:
http://arxiv.org/abs/2412.01031
Autor:
Varma, Om Ramakisan, Kalra, Mala
The metaheuristic optimization technique attained more awareness for handling complex optimization problems. Over the last few years, numerous optimization techniques have been developed that are inspired by natural phenomena. Recently, the propagati
Externí odkaz:
http://arxiv.org/abs/2411.17282
Autonomous robots collaboratively exploring an unknown environment is still an open problem. The problem has its roots in coordination among non-stationary agents, each with only a partial view of information. The problem is compounded when the multi
Externí odkaz:
http://arxiv.org/abs/2411.08400
Reinforcement Learning (RL) is a rapidly growing area of machine learning that finds its application in a broad range of domains, from finance and healthcare to robotics and gaming. Compared to other machine learning techniques, RL agents learn from
Externí odkaz:
http://arxiv.org/abs/2411.08392
Autor:
MicroBooNE collaboration, Abratenko, P., Alterkait, O., Aldana, D. Andrade, Arellano, L., Asaadi, J., Ashkenazi, A., Balasubramanian, S., Baller, B., Barnard, A., Barr, G., Barrow, D., Barrow, J., Basque, V., Bateman, J., Rodrigues, O. Benevides, Berkman, S., Bhanderi, A., Bhat, A., Bhattacharya, M., Bishai, M., Blake, A., Bogart, B., Bolton, T., Brunetti, M. B., Camilleri, L., Cao, Y., Caratelli, D., Cavanna, F., Cerati, G., Chappell, A., Chen, Y., Conrad, J. M., Convery, M., Cooper-Troendle, L., Crespo-Anadon, J. I., Cross, R., Del Tutto, M., Dennis, S. R., Detje, P., Diurba, R., Djurcic, Z., Duffy, K., Dytman, S., Eberly, B., Englezos, P., Ereditato, A., Evans, J. J., Fang, C., Fleming, B. T., Foreman, W., Franco, D., Furmanski, A. P., Gao, F., Garcia-Gamez, D., Gardiner, S., Ge, G., Gollapinni, S., Gramellini, E., Green, P., Greenlee, H., Gu, L., Gu, W., Guenette, R., Guzowski, P., Hagaman, L., Handley, M. D., Hen, O., Hilgenberg, C., Horton-Smith, G. A., Imani, Z., Irwin, B., Ismail, M. S., James, C., Ji, X., Jo, J. H., Johnson, R. A., Jwa, Y. J., Kalra, D., Karagiorgi, G., Ketchum, W., Kirby, M., Kobilarcik, T., Lane, N., Li, J. -Y., Li, Y., Lin, K., Littlejohn, B. R., Liu, L., Louis, W. C., Luo, X., Mahmud, T., Mariani, C., Marsden, D., Marshall, J., Martinez, N., Caicedo, D. A. Martinez, Martynenko, S., Mastbaum, A., Mawby, I., McConkey, N., Meddage, V., Mellet, L., Mendez, J., Micallef, J., Miller, K., Mistry, K., Mohayai, T., Mogan, A., Mooney, M., Moor, A. F., Moore, C. D., Lepin, L. Mora, Moudgalya, M. M., Babu, S. Mulleria, Naples, D., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nguyen, C., Nowak, J., Oza, N., Palamara, O., Pallat, N., Paolone, V., Papadopoulou, A., Papavassiliou, V., Parkinson, H., Pate, S. F., Patel, N., Pavlovic, Z., Piasetzky, E., Pletcher, K., Pophale, I., Qian, X., Raaf, J. L., Radeka, V., Rafique, A., Reggiani-Guzzo, M., Ren, L., Rochester, L., Rondon, J. Rodriguez, Rosenberg, M., Ross-Lonergan, M., Safa, I., Schmitz, D. W., Schukraft, A., Seligman, W., Shaevitz, M. H., Sharankova, R., Shi, J., Snider, E. L., Soderberg, M., Soldner-Rembold, S., Spitz, J., Stancari, M., John, J. St., Strauss, T., Szelc, A. M., Taniuchi, N., Terao, K., Thorpe, C., Torbunov, D., Totani, D., Toups, M., Trettin, A., Tsai, Y. -T., Tyler, J., Uchida, M. A., Usher, T., Viren, B., Wang, J., Weber, M., Wei, H., White, A. J., Wolbers, S., Wongjirad, T., Wospakrik, M., Wresilo, K., Wu, W., Yandel, E., Yang, T., Yates, L. E., Yu, H. W., Zeller, G. P., Zennamo, J., Zhang, C.
Neutrino-nucleus cross section measurements are needed to improve interaction modeling to meet the precision needs of neutrino experiments in efforts to measure oscillation parameters and search for physics beyond the Standard Model. We review the di
Externí odkaz:
http://arxiv.org/abs/2411.03280
Autor:
MicroBooNE collaboration, Abratenko, P., Alterkait, O., Aldana, D. Andrade, Arellano, L., Asaadi, J., Ashkenazi, A., Balasubramanian, S., Baller, B., Barnard, A., Barr, G., Barrow, D., Barrow, J., Basque, V., Bateman, J., Rodrigues, O. Benevides, Berkman, S., Bhanderi, A., Bhat, A., Bhattacharya, M., Bishai, M., Blake, A., Bogart, B., Bolton, T., Brunetti, M. B., Camilleri, L., Cao, Y., Caratelli, D., Cavanna, F., Cerati, G., Chappell, A., Chen, Y., Conrad, J. M., Convery, M., Cooper-Troendle, L., Crespo-Anadon, J. I., Cross, R., Del Tutto, M., Dennis, S. R., Detje, P., Diurba, R., Djurcic, Z., Duffy, K., Dytman, S., Eberly, B., Englezos, P., Ereditato, A., Evans, J. J., Fang, C., Fleming, B. T., Foreman, W., Franco, D., Furmanski, A. P., Gao, F., Garcia-Gamez, D., Gardiner, S., Ge, G., Gollapinni, S., Gramellini, E., Green, P., Greenlee, H., Gu, L., Gu, W., Guenette, R., Guzowski, P., Hagaman, L., Handley, M. D., Hen, O., Hilgenberg, C., Horton-Smith, G. A., Imani, Z., Irwin, B., Ismail, M. S., James, C., Ji, X., Jo, J. H., Johnson, R. A., Jwa, Y. J., Kalra, D., Karagiorgi, G., Ketchum, W., Kirby, M., Kobilarcik, T., Lane, N., Li, J. -Y., Li, Y., Lin, K., Littlejohn, B. R., Liu, L., Louis, W. C., Luo, X., Mahmud, T., Mariani, C., Marsden, D., Marshall, J., Martinez, N., Caicedo, D. A. Martinez, Martynenko, S., Mastbaum, A., Mawby, I., McConkey, N., Meddage, V., Mellet, L., Mendez, J., Micallef, J., Miller, K., Mistry, K., Mohayai, T., Mogan, A., Mooney, M., Moor, A. F., Moore, C. D., Lepin, L. Mora, Moudgalya, M. M., Babu, S. Mulleria, Naples, D., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nguyen, C., Nowak, J., Oza, N., Palamara, O., Pallat, N., Paolone, V., Papadopoulou, A., Papavassiliou, V., Parkinson, H., Pate, S. F., Patel, N., Pavlovic, Z., Piasetzky, E., Pletcher, K., Pophale, I., Qian, X., Raaf, J. L., Radeka, V., Rafique, A., Reggiani-Guzzo, M., Ren, L., Rochester, L., Rondon, J. Rodriguez, Rosenberg, M., Ross-Lonergan, M., Safa, I., Schmitz, D. W., Schukraft, A., Seligman, W., Shaevitz, M. H., Sharankova, R., Shi, J., Snider, E. L., Soderberg, M., Soldner-Rembold, S., Spitz, J., Stancari, M., John, J. St., Strauss, T., Szelc, A. M., Taniuchi, N., Terao, K., Thorpe, C., Torbunov, D., Totani, D., Toups, M., Trettin, A., Tsai, Y. -T., Tyler, J., Uchida, M. A., Usher, T., Viren, B., Wang, J., Weber, M., Wei, H., White, A. J., Wolbers, S., Wongjirad, T., Wospakrik, M., Wresilo, K., Wu, W., Yandel, E., Yang, T., Yates, L. E., Yu, H. W., Zeller, G. P., Zennamo, J., Zhang, C.
Large neutrino liquid argon time projection chamber (LArTPC) experiments can broaden their physics reach by reconstructing and interpreting MeV-scale energy depositions, or blips, present in their data. We demonstrate new calorimetric and particle di
Externí odkaz:
http://arxiv.org/abs/2410.18419
Autor:
Merkow, Jameson, Dorfner, Felix J., Yang, Xiyu, Ersoy, Alexander, Dasegowda, Giridhar, Kalra, Mannudeep, Lungren, Matthew P., Bridge, Christopher P., Tarapov, Ivan
The integration of artificial intelligence (AI) into medical imaging has advanced clinical diagnostics but poses challenges in managing model drift and ensuring long-term reliability. To address these challenges, we develop MMC+, an enhanced framewor
Externí odkaz:
http://arxiv.org/abs/2410.13174
Autor:
Niu, Chuang, Kaviani, Parisa, Lyu, Qing, Kalra, Mannudeep K., Whitlow, Christopher T., Wang, Ge
Current LLMs for creating fully-structured reports face the challenges of formatting errors, content hallucinations, and privacy leakage issues when uploading data to external servers.We aim to develop an open-source, accurate LLM for creating fully-
Externí odkaz:
http://arxiv.org/abs/2409.18319