Zobrazeno 1 - 10
of 8 411
pro vyhledávání: '"A, GRUSHKA"'
Autor:
Anisyutkin, Nikolai K., Burlacu, Vitalie, Marareskul, Vladislav A., Ocherednoy, Alexander K., Stepanova, Kseniya N., Basner, Ayslu
Publikováno v:
Stratum plus. Археология и культурная антропология / Stratum plus. Archaeology and Cultural Anthropology. (1):45-57
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=647921
Autor:
Kondratska, O. A.1 elena-shepel@ukr.net, Grushka, N. G.1, Pavlovich, S. I.1, Meshko, V. V.1, Yanchii, R. I.1
Publikováno v:
Physiological Journal / Fiziologichnyi Zhurnal. 2024, Vol. 70 Issue 3, p59-64. 6p.
Autor:
Kathryn Grushka
Publikováno v:
Creative Arts in Education and Therapy, Vol 10, Iss 1, Pp 41-62 (2024)
Studio Art Therapy is a unique learning ecology with border crossings between visual arts therapies and art studio practice, education, and health. The increased fluidity between research and practice spaces, art therapy, and arts health are elaborat
Externí odkaz:
https://doaj.org/article/2735bf3f1261484595d7c0eeb8ab73f6
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Surgery Open Science, Vol 19, Iss , Pp 70-79 (2024)
Background: Surgical, anesthetic, and obstetric (SAO) care plays a crucial role in global health, recognized by the World Health Organization (WHO) and The Lancet Commission on Global Surgery (LCoGS). LCoGS outlines six indicators for integrating SAO
Externí odkaz:
https://doaj.org/article/40e8e643cea04b6da8b49db3ba66ceb4
Autor:
Grushka, Reesa (AUTHOR)
Publikováno v:
American Poetry Review. Jan/Feb2004, Vol. 33 Issue 1, p9-13. 5p.
Autor:
Grushka, Kathryn
Publikováno v:
Creative Arts in Education & Therapy; Aug2024, Vol. 10 Issue 1, p41-62, 22p
Publikováno v:
In Surgery Open Science June 2024 19:70-79
Autor:
Jastaniah, Atif, Grushka, Jeremey
Publikováno v:
In Surgical Clinics of North America April 2024 104(2):437-449
The algorithms available for retail forecasting have increased in complexity. Newer methods, such as machine learning, are inherently complex. The more traditional families of forecasting models, such as exponential smoothing and autoregressive integ
Externí odkaz:
http://arxiv.org/abs/2102.13209