Zobrazeno 1 - 10
of 97
pro vyhledávání: '"A, Douieb"'
Publikováno v:
In Neuropsychiatrie de l'enfance et de l'adolescence October 2024 72(6):290-299
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A static binary search tree where every search starts from where the previous one ends (lazy finger) is considered. Such a search method is more powerful than that of the classic optimal static trees, where every search starts from the root (root fin
Externí odkaz:
http://arxiv.org/abs/1304.6897
Autor:
Bose, Prosenjit, Douïeb, Karim
In this paper we study the question of whether or not a static search tree should ever be unbalanced. We present several methods to restructure an unbalanced k-ary search tree $T$ into a new tree $R$ that preserves many of the properties of $T$ while
Externí odkaz:
http://arxiv.org/abs/1006.3715
We present the zipper tree, an $O(\log \log n)$-competitive online binary search tree that performs each access in $O(\log n)$ worst-case time. This shows that for binary search trees, optimal worst-case access time and near-optimal amortized access
Externí odkaz:
http://arxiv.org/abs/1003.0139
Let R^d -> A be a query problem over R^d for which there exists a data structure S that can compute P(q) in O(log n) time for any query point q in R^d. Let D be a probability measure over R^d representing a distribution of queries. We describe a data
Externí odkaz:
http://arxiv.org/abs/1002.1092
Autor:
Bose, Prosenjit, Damian, Mirela, Douieb, Karim, O'Rourke, Joseph, Seamone, Ben, Smid, Michiel, Wuhrer, Stefanie
Publikováno v:
International Journal of Computational Geometry & Applications, 22(1):61-82, 2012
We show that the Yao graph Y4 in the L2 metric is a spanner with stretch factor 8(29+23sqrt(2)). Enroute to this, we also show that the Yao graph Y4 in the Linf metric is a planar spanner with stretch factor 8.
Comment: 20 pages, 9 figures
Comment: 20 pages, 9 figures
Externí odkaz:
http://arxiv.org/abs/1001.2913
Let $G$ be a (possibly disconnected) planar subdivision and let $D$ be a probability measure over $\R^2$. The current paper shows how to preprocess $(G,D)$ into an O(n) size data structure that can answer planar point location queries over $G$. The e
Externí odkaz:
http://arxiv.org/abs/1001.2763
The working-set bound [Sleator and Tarjan, J. ACM, 1985] roughly states that searching for an element is fast if the element was accessed recently. Binary search trees, such as splay trees, can achieve this property in the amortized sense, while data
Externí odkaz:
http://arxiv.org/abs/0907.2071
Publikováno v:
In LWT - Food Science and Technology May 2017 78:143-150