Zobrazeno 1 - 10
of 16 627
pro vyhledávání: '"A, Capra"'
Autor:
Ferreira, Ashley, Singh, Mahip, Capra, Andrea, Carli, Ina, Quiceno, Daniel Duque, Fedorko, Wojciech T., Fujiwara, Makoto M., Li, Muyan, Martin, Lars, Saito, Yukiya, Smith, Gareth, Xu, Anqi
The ALPHA-g experiment at CERN aims to perform the first-ever direct measurement of the effect of gravity on antimatter, determining its weight to within 1% precision. This measurement requires an accurate prediction of the vertical position of annih
Externí odkaz:
http://arxiv.org/abs/2412.00961
In this contribution we extend the concept of a Petri net morphism to Elementary Object Systems (EOS). EOS are a nets-within-nets formalism, i.e. we allow the tokens of a Petri net to be Petri nets again. This nested structure has the consequence tha
Externí odkaz:
http://arxiv.org/abs/2411.00149
Autor:
Capra, Lorenzo, Gribaudo, Marco
Publikováno v:
EPTCS 410, 2024, pp. 69-83
Petri Nets (PN) are extensively used as a robust formalism to model concurrent and distributed systems; however, they encounter difficulties in accurately modeling adaptive systems. To address this issue, we defined rewritable PT nets (RwPT) using Ma
Externí odkaz:
http://arxiv.org/abs/2410.23762
Autor:
Lewis, Harry, Mahtab, Mahsa, Retiere, Fabrice, Croix, Austin De St., Raymond, Kurtis, Henriksson-Ward, Maia, Morrison, Nicholas, Zhang, Aileen, Capra, Andrea, Underwood, Ryan
Accurate characterization of quantum yield is crucial to the reconstruction of energy depositions in silicon at the eV scale. This work presents a new method for experimentally calculating quantum yield using vacuum UV-sensitive silicon photomultipli
Externí odkaz:
http://arxiv.org/abs/2410.13033
Violence and armed conflicts have emerged as prominent factors driving food crises. However, the extent of their impact remains largely unexplored. This paper provides an in-depth analysis of the impact of violent conflicts on food security in Africa
Externí odkaz:
http://arxiv.org/abs/2410.22342
Reports from the Famine Early Warning Systems Network (FEWSNET) serve as the benchmark for food security predictions which is crucial for stakeholders in planning interventions and support people in need. This paper assesses the predictive accuracy o
Externí odkaz:
http://arxiv.org/abs/2410.09384
Autor:
Ruo, Andrea, Arreghini, Simone, Capra, Luca, De Chiara, Rosario, Di Pasquale, Valeria, Giusti, Alessandro, Iani, Cristina, Paolillo, Antonio, Petrak, Dominic, Plaum, Alexander, Quamara, Megha, Sabattini, Lorenzo, Schmuck, Viktor, Servillo, Paolo, Zurolo, Francesco, Villani, Valeria
In modern society, service robots are increasingly recognized for their wide range of practical applications. In large and crowded social spaces, such as museums and hospitals, these robots are required to safely move in the environment while exhibit
Externí odkaz:
http://arxiv.org/abs/2409.08677
Autor:
Collaboration, DarkSide-20k, Acerbi, F., Adhikari, P., Agnes, P., Ahmad, I., Albergo, S., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Amaudruz, P., Angiolilli, M., Aprile, E., Ardito, R., Corona, M. Atzori, Auty, D. J., Ave, M., Avetisov, I. C., Azzolini, O., Back, H. O., Balmforth, Z., Olmedo, A. Barrado, Barrillon, P., Batignani, G., Bhowmick, P., Blua, S., Bocci, V., Bonivento, W., Bottino, B., Boulay, M. G., Buchowicz, A., Bussino, S., Busto, J., Cadeddu, M., Cadoni, M., Calabrese, R., Camillo, V., Caminata, A., Canci, N., Capra, A., Caravati, M., Cárdenas-Montes, M., Cargioli, N., Carlini, M., Castellani, A., Castello, P., Cavalcante, P., Cebrian, S., Ruiz, J. Cela, Chashin, S., Chepurnov, A., Cifarelli, L., Cintas, D., Citterio, M., Cleveland, B., Coadou, Y., Cocco, V., Colaiuda, D., Vilda, E. Conde, Consiglio, L., Costa, B. S., Czubak, M., D'Aniello, M., D'Auria, S., Rolo, M. D. Da Rocha, Darbo, G., Davini, S., De Cecco, S., De Guido, G., Dellacasa, G., Derbin, A. V., Devoto, A., Di Capua, F., Di Ludovico, A., Di Noto, L., Di Stefano, P., Dias, L. K., Mairena, D. Díaz, Ding, X., Dionisi, C., Dolganov, G., Dordei, F., Dronik, V., Elersich, A., Ellingwood, E., Erjavec, T., Diaz, M. Fernandez, Ficorella, A., Fiorillo, G., Franchini, P., Franco, D., Gatti, H. Frandini, Frolov, E., Gabriele, F., Gahan, D., Galbiati, C., Galiński, G., Gallina, G., Gallus, G., Garbini, M., Abia, P. Garcia, Gawdzik, A., Gendotti, A., Ghisi, A., Giovanetti, G. K., Casanueva, V. Goicoechea, Gola, A., Grandi, L., Grauso, G., di Cortona, G. Grilli, Grobov, A., Gromov, M., Guerzoni, M., Gulino, M., Guo, C., Hackett, B. R., Hallin, A., Hamer, A., Haranczyk, M., Harrop, B., Hessel, T., Hill, S., Horikawa, S., Hu, J., Hubaut, F., Hucker, J., Hugues, T., Hungerford, E. V., Ianni, A., Ippolito, V., Jamil, A., Jillings, C., Jois, S., Kachru, P., Keloth, R., Kemmerich, N., Kemp, A., Kendziora, C. L., Kimura, M., Kish, A., Kondo, K., Korga, G., Kotsiopoulou, L., Koulosousas, S., Kubankin, A., Kunzé, P., Kuss, M., Kuźniak, M., Kuzwa, M., La Commara, M., Lai, M., Guirriec, E. Le, Leason, E., Leoni, A., Lidey, L., Lissia, M., Luzzi, L., Lychagina, O., Macfadyen, O., Machulin, I. N., Manecki, S., Manthos, I., Mapelli, L., Marasciulli, A., Mari, S. M., Mariani, C., Maricic, J., Martinez, M., Martoff, C. J., Matteucci, G., Mavrokoridis, K., McDonald, A. B., Mclaughlin, J., Merzi, S., Messina, A., Milincic, R., Minutoli, S., Mitra, A., Moharana, A., Moioli, S., Monroe, J., Moretti, E., Morrocchi, M., Mroz, T., Muratova, V. N., Murphy, M., Murra, M., Muscas, C., Musico, P., Nania, R., Nessi, M., Nieradka, G., Nikolopoulos, K., Nikoloudaki, E., Nowak, J., Olchanski, K., Oleinik, A., Oleynikov, V., Organtini, P., de Solórzano, A. Ortiz, Pallavicini, M., Pandola, L., Pantic, E., Paoloni, E., Papi, D., Pastuszak, G., Paternoster, G., Peck, A., Pegoraro, P. A., Pelczar, K., Pellegrini, L. A., Perez, R., Perotti, F., Pesudo, V., Piacentini, S. I., Pino, N., Plante, G., Pocar, A., Poehlmann, M., Pordes, S., Pralavorio, P., Price, D., Puglia, S., Bazetto, M. Queiroga, Ragusa, F., Ramachers, Y., Ramirez, A., Ravinthiran, S., Razeti, M., Renshaw, A. L., Rescigno, M., Retiere, F., Rignanese, L. P., Rivetti, A., Roberts, A., Roberts, C., Rogers, G., Romero, L., Rossi, M., Rubbia, A., Rudik, D., Sabia, M., Salomone, P., Samoylov, O., Sandford, E., Sanfilippo, S., Santone, D., Santorelli, R., Santos, E. M., Savarese, C., Scapparone, E., Schillaci, G., Schuckman II, F. G., Scioli, G., Semenov, D. A., Shalamova, V., Sheshukov, A., Simeone, M., Skensved, P., Skorokhvatov, M. D., Smirnov, O., Smirnova, T., Smith, B., Sotnikov, A., Spadoni, F., Spangenberg, M., Stefanizzi, R., Steri, A., Stornelli, V., Stracka, S., Sulis, S., Sung, A., Sunny, C., Suvorov, Y., Szelc, A. M., Taborda, O., Tartaglia, R., Taylor, A., Taylor, J., Tedesco, S., Testera, G., Thieme, K., Thompson, A., Thorpe, T. N., Tonazzo, A., Torres-Lara, S., Tricomi, A., Unzhakov, E. V., Vallivilayil, T. J., Van Uffelen, M., Velazquez-Fernandez, L., Viant, T., Viel, S., Vishneva, A., Vogelaar, R. B., Vossebeld, J., Vyas, B., Wada, M., Walczak, M. B., Wang, H., Wang, Y., Westerdale, S., Williams, L., Wojaczyński, R., Wojcik, M., Wojcik, M. M., Wright, T., Xiao, X., Xie, Y., Yang, C., Yin, J., Zabihi, A., Zakhary, P., Zani, A., Zhang, Y., Zhu, T., Zichichi, A., Zuzel, G., Zykova, M. P.
DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ~100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half
Externí odkaz:
http://arxiv.org/abs/2408.14071
Autor:
Collaboration, DarkSide-20k, Acerbi, F., Adhikari, P., Agnes, P., Ahmad, I., Albergo, S., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Amaudruz, P., Angiolilli, M., Aprile, E., Ardito, R., Corona, M. Atzori, Auty, D. J., Ave, M., Avetisov, I. C., Azzolini, O., Back, H. O., Balmforth, Z., Olmedo, A. Barrado, Barrillon, P., Batignani, G., Bhowmick, P., Blua, S., Bocci, V., Bonivento, W., Bottino, B., Boulay, M. G., Buchowicz, A., Bussino, S., Busto, J., Cadeddu, M., Cadoni, M., Calabrese, R., Camillo, V., Caminata, A., Canci, N., Capra, A., Caravati, M., Cárdenas-Montes, M., Cargioli, N., Carlini, M., Castellani, A., Castello, P., Cavalcante, P., Cebrian, S., Ruiz, J. M. Cela, Chashin, S., Chepurnov, A., Cifarelli, L., Cintas, D., Citterio, M., Cleveland, B., Coadou, Y., Cocco, V., Colaiuda, D., Vilda, E. Conde, Consiglio, L., Costa, B. S., Czubak, M., D'Aniello, M., D'Auria, S., Rolo, M. D. Da Rocha, Darbo, G., Davini, S., De Cecco, S., De Guido, G., Dellacasa, G., Derbin, A. V., Devoto, A., Di Capua, F., Di Ludovico, A., Di Noto, L., Di Stefano, P., Dias, L. K., Mairena, D. Díaz, Ding, X., Dionisi, C., Dolganov, G., Dordei, F., Dronik, V., Elersich, A., Ellingwood, E., Erjavec, T., Diaz, M. Fernandez, Ficorella, A., Fiorillo, G., Franchini, P., Franco, D., Gatti, H. Frandini, Frolov, E., Gabriele, F., Gahan, D., Galbiati, C., Galiński, G., Gallina, G., Gallus, G., Garbini, M., Abia, P. Garcia, Gawdzik, A., Gendotti, A., Ghisi, A., Giovanetti, G. K., Casanueva, V. Goicoechea, Gola, A., Grandi, L., Grauso, G., di Cortona, G. Grilli, Grobov, A., Gromov, M., Guerzoni, M., Gulino, M., Guo, C., Hackett, B. R., Hallin, A., Hamer, A., Haranczyk, M., Harrop, B., Hessel, T., Hill, S., Horikawa, S., Hu, J., Hubaut, F., Hucker, J., Hugues, T., Hungerford, E. V., Ianni, A., Ippolito, V., Jamil, A., Jillings, C., Jois, S., Kachru, P., Keloth, R., Kemmerich, N., Kemp, A., Kendziora, C. L., Kimura, M., Kondo, K., Korga, G., Kotsiopoulou, L., Koulosousas, S., Kubankin, A., Kunzé, P., Kuss, M., Kuźniak, M., Kuzwa, M., La Commara, M., Lai, M., Guirriec, E. Le, Leason, E., Leoni, A., Lidey, L., Lissia, M., Luzzi, L., Lychagina, O., Macfadyen, O., Machulin, I. N., Manecki, S., Manthos, I., Mapelli, L., Marasciulli, A., Mari, S. M., Mariani, C., Maricic, J., Martinez, M., Martoff, C. J., Matteucci, G., Mavrokoridis, K., McDonald, A. B., Mclaughlin, J., Merzi, S., Messina, A., Milincic, R., Minutoli, S., Mitra, A., Moioli, S., Monroe, J., Moretti, E., Morrocchi, M., Mroz, T., Muratova, V. N., Murphy, M., Murra, M., Muscas, C., Musico, P., Nania, R., Nessi, M., Nieradka, G., Nikolopoulos, K., Nikoloudaki, E., Nowak, J., Olchanski, K., Oleinik, A., Oleynikov, V., Organtini, P., de Solórzano, A. Ortiz, Pallavicini, M., Pandola, L., Pantic, E., Paoloni, E., Papi, D., Pastuszak, G., Paternoster, G., Peck, A., Pegoraro, P. A., Pelczar, K., Pellegrini, L. A., Perez, R., Perotti, F., Pesudo, V., Piacentini, S. I., Pino, N., Plante, G., Pocar, A., Poehlmann, M., Pordes, S., Pralavorio, P., Price, D., Puglia, S., Bazetto, M. Queiroga, Ragusa, F., Ramachers, Y., Ramirez, A., Ravinthiran, S., Razeti, M., Renshaw, A. L., Rescigno, M., Retiere, F., Rignanese, L. P., Rivetti, A., Roberts, A., Roberts, C., Rogers, G., Romero, L., Rossi, M., Rubbia, A., Rudik, D., Sabia, M., Salomone, P., Samoylov, O., Sandford, E., Sanfilippo, S., Santone, D., Santorelli, R., Santos, E. M., Savarese, C., Scapparone, E., Schillaci, G., Schuckman II, F. G., Scioli, G., Semenov, D. A., Shalamova, V., Sheshukov, A., Simeone, M., Skensved, P., Skorokhvatov, M. D., Smirnov, O., Smirnova, T., Smith, B., Sotnikov, A., Spadoni, F., Spangenberg, M., Stefanizzi, R., Steri, A., Stornelli, V., Stracka, S., Sulis, S., Sung, A., Sunny, C., Suvorov, Y., Szelc, A. M., Taborda, O., Tartaglia, R., Taylor, A., Taylor, J., Tedesco, S., Testera, G., Thieme, K., Thompson, A., Tonazzo, A., Torres-Lara, S., Tricomi, A., Unzhakov, E. V., Vallivilayil, T. J., Van Uffelen, M., Velazquez-Fernandez, L., Viant, T., Viel, S., Vishneva, A., Vogelaar, R. B., Vossebeld, J., Vyas, B., Walczak, M. B., Wang, Y., Wang, H., Westerdale, S., Williams, L., Wojaczyński, R., Wojcik, M., Wojcik, M. M., Wright, T., Xie, Y., Yang, C., Yin, J., Zabihi, A., Zakhary, P., Zani, A., Zhang, Y., Zhu, T., Zichichi, A., Zuzel, G., Zykova, M. P.
The dual-phase liquid argon time projection chamber is presently one of the leading technologies to search for dark matter particles with masses below 10 GeV/c$^2$. This was demonstrated by the DarkSide-50 experiment with approximately 50 kg of low-r
Externí odkaz:
http://arxiv.org/abs/2407.05813
AI regulations are expected to prohibit machine learning models from using sensitive attributes during training. However, the latest Natural Language Processing (NLP) classifiers, which rely on deep learning, operate as black-box systems, complicatin
Externí odkaz:
http://arxiv.org/abs/2407.01697