Zobrazeno 1 - 10
of 10 691
pro vyhledávání: '"A, Bhutani"'
Conversational Recommender Systems (CRS) engage users in interactive dialogues to gather preferences and provide personalized recommendations. Traditionally, CRS rely on pre-defined attributes or expensive, domain-specific annotated datasets to guide
Externí odkaz:
http://arxiv.org/abs/2411.06064
The domain of human resources (HR) includes a broad spectrum of tasks related to natural language processing (NLP) techniques. Recent breakthroughs in NLP have generated significant interest in its industrial applications in this domain and potential
Externí odkaz:
http://arxiv.org/abs/2410.16498
Autor:
Belem, Catarina G., Pezeskhpour, Pouya, Iso, Hayate, Maekawa, Seiji, Bhutani, Nikita, Hruschka, Estevam
Although many studies have investigated and reduced hallucinations in large language models (LLMs) for single-document tasks, research on hallucination in multi-document summarization (MDS) tasks remains largely unexplored. Specifically, it is unclea
Externí odkaz:
http://arxiv.org/abs/2410.13961
The rapid increase in textual information means we need more efficient methods to sift through, organize, and understand it all. While retrieval-augmented generation (RAG) models excel in accessing information from large document collections, they st
Externí odkaz:
http://arxiv.org/abs/2410.11996
Molecular Foundation Models are emerging as powerful tools for accelerating molecular design, material science, and cheminformatics, leveraging transformer architectures to speed up the discovery of new materials and drugs while reducing the computat
Externí odkaz:
http://arxiv.org/abs/2409.15370
Autor:
Imagen-Team-Google, Baldridge, Jason, Bauer, Jakob, Bhutani, Mukul, Brichtova, Nicole, Bunner, Andrew, Castrejon, Lluis, Chan, Kelvin, Chen, Yichang, Dieleman, Sander, Du, Yuqing, Eaton-Rosen, Zach, Fei, Hongliang, de Freitas, Nando, Gao, Yilin, Gladchenko, Evgeny, Colmenarejo, Sergio Gómez, Guo, Mandy, Haig, Alex, Hawkins, Will, Hu, Hexiang, Huang, Huilian, Igwe, Tobenna Peter, Kaplanis, Christos, Khodadadeh, Siavash, Kim, Yelin, Konyushkova, Ksenia, Langner, Karol, Lau, Eric, Lawton, Rory, Luo, Shixin, Mokrá, Soňa, Nandwani, Henna, Onoe, Yasumasa, Oord, Aäron van den, Parekh, Zarana, Pont-Tuset, Jordi, Qi, Hang, Qian, Rui, Ramachandran, Deepak, Rane, Poorva, Rashwan, Abdullah, Razavi, Ali, Riachi, Robert, Srinivasan, Hansa, Srinivasan, Srivatsan, Strudel, Robin, Uria, Benigno, Wang, Oliver, Wang, Su, Waters, Austin, Wolff, Chris, Wright, Auriel, Xiao, Zhisheng, Xiong, Hao, Xu, Keyang, van Zee, Marc, Zhang, Junlin, Zhang, Katie, Zhou, Wenlei, Zolna, Konrad, Aboubakar, Ola, Akbulut, Canfer, Akerlund, Oscar, Albuquerque, Isabela, Anderson, Nina, Andreetto, Marco, Aroyo, Lora, Bariach, Ben, Barker, David, Ben, Sherry, Berman, Dana, Biles, Courtney, Blok, Irina, Botadra, Pankil, Brennan, Jenny, Brown, Karla, Buckley, John, Bunel, Rudy, Bursztein, Elie, Butterfield, Christina, Caine, Ben, Carpenter, Viral, Casagrande, Norman, Chang, Ming-Wei, Chang, Solomon, Chaudhuri, Shamik, Chen, Tony, Choi, John, Churbanau, Dmitry, Clement, Nathan, Cohen, Matan, Cole, Forrester, Dektiarev, Mikhail, Du, Vincent, Dutta, Praneet, Eccles, Tom, Elue, Ndidi, Feden, Ashley, Fruchter, Shlomi, Garcia, Frankie, Garg, Roopal, Ge, Weina, Ghazy, Ahmed, Gipson, Bryant, Goodman, Andrew, Górny, Dawid, Gowal, Sven, Gupta, Khyatti, Halpern, Yoni, Han, Yena, Hao, Susan, Hayes, Jamie, Heek, Jonathan, Hertz, Amir, Hirst, Ed, Hoogeboom, Emiel, Hou, Tingbo, Howard, Heidi, Ibrahim, Mohamed, Ike-Njoku, Dirichi, Iljazi, Joana, Ionescu, Vlad, Isaac, William, Jana, Reena, Jennings, Gemma, Jenson, Donovon, Jia, Xuhui, Jones, Kerry, Ju, Xiaoen, Kajic, Ivana, Ayan, Burcu Karagol, Kelly, Jacob, Kothawade, Suraj, Kouridi, Christina, Ktena, Ira, Kumakaw, Jolanda, Kurniawan, Dana, Lagun, Dmitry, Lavitas, Lily, Lee, Jason, Li, Tao, Liang, Marco, Li-Calis, Maggie, Liu, Yuchi, Alberca, Javier Lopez, Lorrain, Matthieu Kim, Lu, Peggy, Lum, Kristian, Ma, Yukun, Malik, Chase, Mellor, John, Mensink, Thomas, Mosseri, Inbar, Murray, Tom, Nematzadeh, Aida, Nicholas, Paul, Nørly, Signe, Oliveira, João Gabriel, Ortiz-Jimenez, Guillermo, Paganini, Michela, Paine, Tom Le, Paiss, Roni, Parrish, Alicia, Peckham, Anne, Peswani, Vikas, Petrovski, Igor, Pfaff, Tobias, Pirozhenko, Alex, Poplin, Ryan, Prabhu, Utsav, Qi, Yuan, Rahtz, Matthew, Rashtchian, Cyrus, Rastogi, Charvi, Raul, Amit, Rebuffi, Sylvestre-Alvise, Ricco, Susanna, Riedel, Felix, Robinson, Dirk, Rohatgi, Pankaj, Rosgen, Bill, Rumbley, Sarah, Ryu, Moonkyung, Salgado, Anthony, Salimans, Tim, Singla, Sahil, Schroff, Florian, Schumann, Candice, Shah, Tanmay, Shaw, Eleni, Shaw, Gregory, Shillingford, Brendan, Shivakumar, Kaushik, Shtatnov, Dennis, Singer, Zach, Sluzhaev, Evgeny, Sokolov, Valerii, Sottiaux, Thibault, Stimberg, Florian, Stone, Brad, Stutz, David, Su, Yu-Chuan, Tabellion, Eric, Tang, Shuai, Tao, David, Thomas, Kurt, Thornton, Gregory, Toor, Andeep, Udrescu, Cristian, Upadhyay, Aayush, Vasconcelos, Cristina, Vasiloff, Alex, Voynov, Andrey, Walker, Amanda, Wang, Luyu, Wang, Miaosen, Wang, Simon, Wang, Stanley, Wang, Qifei, Wang, Yuxiao, Weisz, Ágoston, Wiles, Olivia, Wu, Chenxia, Xu, Xingyu Federico, Xue, Andrew, Yang, Jianbo, Yu, Luo, Yurtoglu, Mete, Zand, Ali, Zhang, Han, Zhang, Jiageng, Zhao, Catherine, Zhaxybay, Adilet, Zhou, Miao, Zhu, Shengqi, Zhu, Zhenkai, Bloxwich, Dawn, Bordbar, Mahyar, Cobo, Luis C., Collins, Eli, Dai, Shengyang, Doshi, Tulsee, Dragan, Anca, Eck, Douglas, Hassabis, Demis, Hsiao, Sissie, Hume, Tom, Kavukcuoglu, Koray, King, Helen, Krawczyk, Jack, Li, Yeqing, Meier-Hellstern, Kathy, Orban, Andras, Pinsky, Yury, Subramanya, Amar, Vinyals, Oriol, Yu, Ting, Zwols, Yori
We introduce Imagen 3, a latent diffusion model that generates high quality images from text prompts. We describe our quality and responsibility evaluations. Imagen 3 is preferred over other state-of-the-art (SOTA) models at the time of evaluation. I
Externí odkaz:
http://arxiv.org/abs/2408.07009
Automatically generating data visualizations in response to human utterances on datasets necessitates a deep semantic understanding of the data utterance, including implicit and explicit references to data attributes, visualization tasks, and necessa
Externí odkaz:
http://arxiv.org/abs/2407.06129
Autor:
Kandogan, Eser, Rahman, Sajjadur, Bhutani, Nikita, Zhang, Dan, Chen, Rafael Li, Mitra, Kushan, Gurajada, Sairam, Pezeshkpour, Pouya, Iso, Hayate, Feng, Yanlin, Kim, Hannah, Shen, Chen, Wang, Jin, Hruschka, Estevam
Large Language Models (LLMs) have showcased remarkable capabilities surpassing conventional NLP challenges, creating opportunities for use in production use cases. Towards this goal, there is a notable shift to building compound AI systems, wherein L
Externí odkaz:
http://arxiv.org/abs/2406.00584
While generative multilingual models are rapidly being deployed, their safety and fairness evaluations are largely limited to resources collected in English. This is especially problematic for evaluations targeting inherently socio-cultural phenomena
Externí odkaz:
http://arxiv.org/abs/2403.05696
While large language models (LMs) demonstrate remarkable performance, they encounter challenges in providing accurate responses when queried for information beyond their pre-trained memorization. Although augmenting them with relevant external inform
Externí odkaz:
http://arxiv.org/abs/2402.13492