Zobrazeno 1 - 10
of 39
pro vyhledávání: '"A'kif Al-Fugara"'
Autor:
Ali Nouh Mabdeh, Rajendran Shobha Ajin, Seyed Vahid Razavi-Termeh, Mohammad Ahmadlou, A’kif Al-Fugara
Publikováno v:
Remote Sensing, Vol 16, Iss 14, p 2595 (2024)
Flooding is a recurrent hazard occurring worldwide, resulting in severe losses. The preparation of a flood susceptibility map is a non-structural approach to flood management before its occurrence. With recent advances in artificial intelligence, ach
Externí odkaz:
https://doaj.org/article/243728b3677e4e2588ff3117df94018e
Autor:
Rami Al Shawabkeh, Mwfeq AlHaddad, A'kif Al-Fugara, Linda Al-Hawwari, Mohammad Iyad Al-Hawwari, Aseel Omoush, Mai Arar
Publikováno v:
Ain Shams Engineering Journal, Vol 15, Iss 2, Pp 102359- (2024)
Higher land surface temperature (LST) in cities than their surrounding areas presents a major sustainability challenge for cities. Decision-makers and planners use the LST measurements to monitor the urban environment to reduce the urban climate’s
Externí odkaz:
https://doaj.org/article/db51eb4a79b5485a8b45fd30510f6518
Autor:
Abdel Rahman Al-Shabeeb, Ibraheem Hamdan, A'kif Al-Fugara, Rida Al-Adamat, Mohammed Alrawashdeh
Publikováno v:
Water Supply, Vol 23, Iss 5, Pp 1743-1759 (2023)
Population growth and overexploitation of water resources pose ongoing pressure on groundwater resources. This study compares the capability of four data mining methods, namely, boosted regression tree (BRT), random forest (RF), multivariate adaptive
Externí odkaz:
https://doaj.org/article/f835396d41284c619dcd481948b7e7ae
Autor:
Abdel Rahman Al-Shabeeb, A’kif Al-Fugara, Khaled Mohamed Khedher, Ali Nouh Mabdeh, Rida Al-Adamat
Publikováno v:
Geomatics, Natural Hazards & Risk, Vol 13, Iss 1, Pp 2252-2282 (2022)
This study employs five genetic algorithm (GA)-based machine learning (ML) models, namely the Decision Tree (DT), k-Nearest Neighbors (kNN), NaïveBayes (NB), Support Vector Machine (SVM), and Extreme Learning Machine (ELM), to build a novel ensemble
Externí odkaz:
https://doaj.org/article/4378f66e61f441ef8f0a29ae4f701870
Autor:
Mohammad Ahmadlou, A'kif Al‐Fugara, Abdel Rahman Al‐Shabeeb, Aman Arora, Rida Al‐Adamat, Quoc Bao Pham, Nadhir Al‐Ansari, Nguyen Thi Thuy Linh, Hedieh Sajedi
Publikováno v:
Journal of Flood Risk Management, Vol 14, Iss 1, Pp n/a-n/a (2021)
Abstract Floods are one of the most destructive natural disasters causing financial damages and casualties every year worldwide. Recently, the combination of data‐driven techniques with remote sensing (RS) and geographical information systems (GIS)
Externí odkaz:
https://doaj.org/article/e7496bb0f5294f31977d8376ad50df2a
Autor:
A’kif Al-Fugara, Ali Nouh Mabdeh, Mohammad Ahmadlou, Hamid Reza Pourghasemi, Rida Al-Adamat, Biswajeet Pradhan, Abdel Rahman Al-Shabeeb
Publikováno v:
ISPRS International Journal of Geo-Information, Vol 10, Iss 6, p 382 (2021)
Fires are one of the most destructive forces in natural ecosystems. This study aims to develop and compare four hybrid models using two well-known machine learning models, support vector regression (SVR) and the adaptive neuro-fuzzy inference system
Externí odkaz:
https://doaj.org/article/91d088291d694511b06d4afe0c5e7e27
Publikováno v:
Egyptian Journal of Remote Sensing and Space Sciences, Vol 19, Iss 1, Pp 61-72 (2016)
Bukit Merah karst has been deteriorating dramatically over 40 years due to intensification of human activities as a result of fast rate of lateral urbanization and extensive dimensional expansion of surface mining activities for instance, quarrying.
Externí odkaz:
https://doaj.org/article/f100c0cf88044cddbf5be4de40dc8a95
Publikováno v:
Sensors, Vol 19, Iss 9, p 2069 (2019)
In this study, a multi-linear regression model for potential fishing zone (PFZ) mapping along the Saudi Arabian Red Sea coasts of Yanbu’ al Bahr and Jeddah was developed, using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data de
Externí odkaz:
https://doaj.org/article/5889db06f820462eb7f71e6a001d2d49
Autor:
Rami Al shawabkeh, Mwfeq AlHaddad, A'kif al_fugara, Mai Arar, Raghad Alhammad, Mohammad alshraah, Motaz alhamouri
Publikováno v:
Alexandria Engineering Journal. 69:639-676
Publikováno v:
Doklady Earth Sciences. 507:1169-1180