Zobrazeno 1 - 10
of 906
pro vyhledávání: '"92C17"'
We discuss a nonlinear system of partial differential equations modelling the formation of granuloma during tuberculosis infections and prove the global solvability of the homogeneous Neumann problem for \begin{align*} \begin{cases} u_t = D_u \Delta
Externí odkaz:
http://arxiv.org/abs/2411.00542
Autor:
Martini, Adrian, Mayorcas, Avi
We study an additive-noise approximation to Keller--Segel--Dean--Kawasaki dynamics which is proposed as an approximate model to the fluctuating hydrodynamics of chemotactically interacting particles around their mean-field limit. Two parameters play
Externí odkaz:
http://arxiv.org/abs/2410.17022
Populations are heterogeneous, deviating in numerous ways. Phenotypic diversity refers to the range of traits or characteristics across a population, where for cells this could be the levels of signalling, movement and growth activity, etc. Clearly,
Externí odkaz:
http://arxiv.org/abs/2410.13629
Autor:
Black, Tobias
We establish the H\"older continuity of bounded nonnegative weak solutions to \begin{align*} \big(\Phi^{-1}(w)\big)_t=\Delta w+\nabla\cdot\big(a(x,t)\Phi^{-1}(w)\big)+b\big(x,t,\Phi^{-1}(w)\big), \end{align*} with convex $\Phi\in C^0([0,\infty))\cap
Externí odkaz:
http://arxiv.org/abs/2410.03307
In this paper, we study the Cauchy problem of the classical incompressible Navier-Stokes equations and the parabolic-elliptic Keller-Segel system in the framework of the Fourier-Besov spaces with variable regularity and integrability indices. By full
Externí odkaz:
http://arxiv.org/abs/2410.05293
In this paper, we are concerned with the well-posed issues of the fractional dissipative system in the framework of the Fourier--Besov spaces with variable regularity and integrability indices. By fully using some basic properties of these variable f
Externí odkaz:
http://arxiv.org/abs/2410.00060
Finite-time blow-up in fully parabolic quasilinear Keller-Segel systems with supercritical exponents
Autor:
Cao, Xinru, Fuest, Mario
We examine the possibility of finite-time blow-up of solutions to the fully parabolic quasilinear Keller--Segel model \begin{align}\tag{$\star$}\label{prob:star} \begin{cases} u_t = \nabla \cdot ((u+1)^{m-1}\nabla u - u(u+1)^{q-1}\nabla v) & \text{in
Externí odkaz:
http://arxiv.org/abs/2409.19388
Autor:
Chemetov, N. V.
Publikováno v:
Communications on Pure and Applied Analysis, 10 (4) (2011), 1079-1096
In the article we study a hyperbolic-elliptic system of PDE. The system can describe two different physical phenomena: 1st one is the motion of magnetic vortices in the II-type superconductor and 2nd one \ is the collective motion of cells. Motivated
Externí odkaz:
http://arxiv.org/abs/2409.17097
Autor:
Black, Tobias
In this paper we consider a chemotaxis system with signal consumption and degenerate diffusion of the form \begin{align*} \left\lbrace \begin{array}{r@{}l@{\quad}l} &u_t=\nabla\cdot\big(D(u)\nabla u-uS(u)\nabla v\big)+f(u,v),\\ &v_t=\Delta v- uv,\\ \
Externí odkaz:
http://arxiv.org/abs/2409.14890
Autor:
Eckardt, Maria, Surulescu, Christina
We consider a model for the dynamics of active cells interacting with their quiescent counterparts under the influence of acidity characterized by proton concentration. The active cells perform nonlinear diffusion and infer proliferation or decay, ac
Externí odkaz:
http://arxiv.org/abs/2409.12657