Zobrazeno 1 - 10
of 612
pro vyhledávání: '"81S10"'
Autor:
Jarvis, P D, Rudolph, G
We study the ring of invariant functions over the $N$-fold Cartesian product of copies of the compact Lie group $G=SU(2)$, modulo the action of conjugation by the diagonal subgroup, generalizing the group character ring. For $N=1$, an orthonormal bas
Externí odkaz:
http://arxiv.org/abs/2407.01066
Positivity preservation is an important issue in the dynamics of open quantum systems: positivity violations always mark the border of validity of the model. We investigate the positivity of self-adjoint polynomial Gaussian integral operators $\wideh
Externí odkaz:
http://arxiv.org/abs/2405.04438
In this paper, we describe holomorphic quantizations of the cotangent bundle of a symmetric space of compact type $T^*(U/K)\cong U_\mathbb{C}/K_\mathbb{C}$, along Mabuchi rays of $U$-invariant K\"ahler structures. At infinite geodesic time, the K\"ah
Externí odkaz:
http://arxiv.org/abs/2404.19697
Autor:
Saikia, Manimugdha
We associate quantum states with subsets of a product of two compact connected K\"ahler manifolds $M_1$ and $M_2$. To associate the quantum state with the subset, we use the map that restricts holomorphic sections of the quantum line bundle over the
Externí odkaz:
http://arxiv.org/abs/2403.17435
Autor:
Aljasem, Jafar, Kisil, Vladimir V.
Publikováno v:
In: Rogosin, S. (eds) Analysis without Borders. Oper. Th: Adv. Appl, vol 297. Birkh\"auser, 2024
We introduce a concept of the operator (non-commutative) projective line PH defined by a Hilbert space H and a symplectic structure on it. Points of PH are Lagrangian subspaces of H. If a particular Lagrangian subspace is fixed then we can define SL(
Externí odkaz:
http://arxiv.org/abs/2402.02595
Autor:
Alfonsi, Luigi
This survey article is an invited contribution to the Encyclopedia of Mathematical Physics, 2nd edition. We provide an accessible overview on relevant applications of higher and derived geometry to theoretical physics, including higher gauge theory,
Externí odkaz:
http://arxiv.org/abs/2312.07308
Autor:
Sinha, Pritish, Yadav, Ankit
Publikováno v:
J. Math. Phys. 65, 062101 (2024)
We study the Poisson geometrical formulation of quantum mechanics for finite dimensional mixed and pure states. Equivalently, we show that quantum mechanics can be understood in the language of classical mechanics. We review the symplectic structure
Externí odkaz:
http://arxiv.org/abs/2312.05615
Autor:
Joseph, Ilon
Publikováno v:
J. Phys. A: Math. Theor. 56 (2023) 484001
The phase space Koopman-van Hove (KvH) equation can be derived from the asymptotic semiclassical analysis of partial differential equations. Semiclassical theory yields the Hamilton-Jacobi equation for the complex phase factor and the transport equat
Externí odkaz:
http://arxiv.org/abs/2306.01865
Autor:
Wernli, Konstantin
These are the lecture notes for a short course on geometric quantization given by the author at the XVIII Modave Summer School on Mathematical Physics, Sep 5 - Sep 9.
Externí odkaz:
http://arxiv.org/abs/2306.00178
Autor:
Kristel, Peter, Schippers, Eric
This paper is an introduction to polarizations in the symplectic and orthogonal settings. They arise in association to a triple of compatible structures on a real vector space, consisting of an inner product, a symplectic form, and a complex structur
Externí odkaz:
http://arxiv.org/abs/2304.10774