Zobrazeno 1 - 6
of 6
pro vyhledávání: '"65D15, 65T40"'
The kernel interpolant in a reproducing kernel Hilbert space is optimal in the worst-case sense among all approximations of a function using the same set of function values. In this paper, we compare two search criteria to construct lattice point set
Externí odkaz:
http://arxiv.org/abs/2304.01685
We approximate $d$-variate periodic functions in weighted Korobov spaces with general weight parameters using $n$ function values at lattice points. We do not limit $n$ to be a prime number, as in currently available literature, but allow any number
Externí odkaz:
http://arxiv.org/abs/2209.01002
We develop the uniform sparse Fast Fourier Transform (usFFT), an efficient, non-intrusive, adaptive algorithm for the solution of elliptic partial differential equations with random coefficients. The algorithm is an adaption of the sparse Fast Fourie
Externí odkaz:
http://arxiv.org/abs/2109.04131
Autor:
Morrow, Zack, Stoyanov, Miroslav
Publikováno v:
SIAM J. Sci. Comput. 42.4 (2020), A2436-A2460
We present a method for dimensionally adaptive sparse trigonometric interpolation of multidimensional periodic functions belonging to a smoothness class of finite order. This method targets applications where periodicity must be preserved and the pre
Externí odkaz:
http://arxiv.org/abs/1908.10672
Publikováno v:
Sampling Theory, Signal Processing, and Data Analysis. 20
We develop the uniform sparse Fast Fourier Transform (usFFT), an efficient, non-intrusive, adaptive algorithm for the solution of elliptic partial differential equations with random coefficients. The algorithm is an adaption of the sparse Fast Fourie
Autor:
Zachary Morrow, Miroslav Stoyanov
We present a method for dimensionally adaptive sparse trigonometric interpolation of multidimensional periodic functions belonging to a smoothness class of finite order. This method targets applications where periodicity must be preserved and the pre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81c0d1cb158830b9281c4714f37eda85
http://arxiv.org/abs/1908.10672
http://arxiv.org/abs/1908.10672