Zobrazeno 1 - 10
of 17
pro vyhledávání: '"631/114/1305"'
Publikováno v:
Barney, S, Dlay, S, Crowe, A, Kyriazakis, I & Leach, M 2023, ' Deep learning pose estimation for multi-cattle lameness detection ', Scientific Reports, vol. 13, no. 1, 4499 . https://doi.org/10.1038/s41598-023-31297-1
The objective of this study was to develop a fully automated multiple-cow real-time lameness detection system using a deep learning approach for cattle detection and pose estimation that could be deployed across dairy farms. Utilising computer vision
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9906e10d529e59a4e567c88b159d56dc
https://pure.qub.ac.uk/en/publications/809e5e8d-d5d3-48d8-8210-e16f67b7ad3d
https://pure.qub.ac.uk/en/publications/809e5e8d-d5d3-48d8-8210-e16f67b7ad3d
Autor:
Hidayat Trimarsanto, Roberto Amato, Richard D. Pearson, Edwin Sutanto, Rintis Noviyanti, Leily Trianty, Jutta Marfurt, Zuleima Pava, Diego F. Echeverry, Tatiana M. Lopera-Mesa, Lidia M. Montenegro, Alberto Tobón-Castaño, Matthew J. Grigg, Bridget Barber, Timothy William, Nicholas M. Anstey, Sisay Getachew, Beyene Petros, Abraham Aseffa, Ashenafi Assefa, Awab G. Rahim, Nguyen H. Chau, Tran T. Hien, Mohammad S. Alam, Wasif A. Khan, Benedikt Ley, Kamala Thriemer, Sonam Wangchuck, Yaghoob Hamedi, Ishag Adam, Yaobao Liu, Qi Gao, Kanlaya Sriprawat, Marcelo U. Ferreira, Moses Laman, Alyssa Barry, Ivo Mueller, Marcus V. G. Lacerda, Alejandro Llanos-Cuentas, Srivicha Krudsood, Chanthap Lon, Rezika Mohammed, Daniel Yilma, Dhelio B. Pereira, Fe E. J. Espino, Cindy S. Chu, Iván D. Vélez, Chayadol Namaik-larp, Maria F. Villegas, Justin A. Green, Gavin Koh, Julian C. Rayner, Eleanor Drury, Sónia Gonçalves, Victoria Simpson, Olivo Miotto, Alistair Miles, Nicholas J. White, Francois Nosten, Dominic P. Kwiatkowski, Ric N. Price, Sarah Auburn
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Funder: HT was supported by a Charles Darwin University International PhD Scholarship (CDIPS)
Funder: Malaysian Ministry of Health (BP00500420)
Traditionally, patient travel history has been used to distinguish imported from autochthonous m
Funder: Malaysian Ministry of Health (BP00500420)
Traditionally, patient travel history has been used to distinguish imported from autochthonous m
Autor:
Katie L. Davies, Katherine Hughes, Clare M. C. Gillis, Abigail L. Fowden, Paul Rees, John W. Wills, Dorottya Nagy
Publikováno v:
Communications Biology, Vol 4, Iss 1, Pp 1-11 (2021)
Communications Biology
Communications Biology
Funder: University of Cambridge | Girton College, University of Cambridge (Girton); doi: https://doi.org/10.13039/501100000621
Funder: University of Cambridge Herchel-Smith Fund
Funder: British Veterinary Association Animal Welfare Foundati
Funder: University of Cambridge Herchel-Smith Fund
Funder: British Veterinary Association Animal Welfare Foundati
Publikováno v:
Scientific Reports, Vol 10, Iss 1, Pp 1-13 (2020)
Scientific Reports
Scientific Reports
Using machine learning techniques to build representations from biomedical data can help us understand the latent biological mechanism of action and lead to important discoveries. Recent developments in single-cell RNA-sequencing protocols have allow
Autor:
Jalali-Najafabadi, Farideh, Stadler, Michael, Dand, Nick, Jadon, Deepak, Soomro, Mehreen, Ho, Pauline, Marzo-Ortega, Helen, Helliwell, Philip, Korendowych, Eleanor, Simpson, Michael A, Packham, Jonathan, Smith, Catherine H, Barker, Jonathan N, McHugh, Neil, Warren, Richard B, Barton, Anne, Bowes, John, BADBIR Study Group, BSTOP Study Group
Publikováno v:
Scientific Reports
Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
BADBIR Study Group 2021, ' Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models ', Scientific Reports, vol. 11, no. 1, 23335 . https://doi.org/10.1038/s41598-021-00854-x
Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
BADBIR Study Group 2021, ' Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models ', Scientific Reports, vol. 11, no. 1, 23335 . https://doi.org/10.1038/s41598-021-00854-x
In view of the growth of clinical risk prediction models using genetic data, there is an increasing need for studies that use appropriate methods to select the optimum number of features from a large number of genetic variants with a high degree of r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::affbe1177f917391e44295ba70d6ca49
Autor:
Valeria de Angel, Serena Lewis, Katie White, Carolin Oetzmann, Daniel Leightley, Emanuela Oprea, Grace Lavelle, Faith Matcham, Alice Pace, David C Mohr, Richard Dobson, Matthew Hotopf
Publikováno v:
npj Digital Medicine, Vol 5, Iss 1, Pp 1-14 (2022)
NPJ Digital Medicine
De Angel, V, Lewis, S, White, K, Oetzmann, C, Leightley, D, Oprea, E, Lavelle, G, Matcham, F, Pace, A, Mohr, D C, Dobson, R & Hotopf, M 2022, ' Digital health tools for the passive monitoring of depression: a systematic review of methods ', npj Digital Medicine, vol. 5, no. 1, 3 . https://doi.org/10.1038/s41746-021-00548-8
NPJ Digital Medicine
De Angel, V, Lewis, S, White, K, Oetzmann, C, Leightley, D, Oprea, E, Lavelle, G, Matcham, F, Pace, A, Mohr, D C, Dobson, R & Hotopf, M 2022, ' Digital health tools for the passive monitoring of depression: a systematic review of methods ', npj Digital Medicine, vol. 5, no. 1, 3 . https://doi.org/10.1038/s41746-021-00548-8
Background: The use of digital tools to measure physiological and behavioural variables of potential relevance to mental health is a growing field sitting at the intersection between computer science, engineering and clinical science. We aim to summa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ebf35393350ebd104f08776b817e7de5
https://doi.org/10.1101/2021.07.19.21260786
https://doi.org/10.1101/2021.07.19.21260786
Autor:
Menden M, Wang D, Mason M, Szalai B, Bulusu K, Guan Y, Yu T, Kang J, Jeon M, Wolfinger R, Nguyen T, Zaslavskiy M, Jang I, Ghazoui Z, Ahsen M, Vogel R, Neto E, Norman T, Tang E, Garnett M, Di Veroli G, Fawell S, Stolovitzky G, Guinney J, Dry J, Saez-Rodriguez J, Abante J, Abecassis B, Aben N, Aghamirzaie D, Aittokallio T, Akhtari F, Al-lazikani B, Alam T, Allam A, Allen C, de Almeida M, Altarawy D, Alves V, Amadoz A, Anchang B, Antolin A, Ash J, Aznar V, Ba-alawi W, Bagheri M, Bajic V, Ball G, Ballester P, Baptista D, Bare C, Bateson M, Bender A, Bertrand D, Wijayawardena B, Boroevich K, Bosdriesz E, Bougouffa S, Bounova G, Brouwer T, Bryant B, Calaza M, Calderone A, Calza S, Capuzzi S, Carbonell-Caballero J, Carlin D, Carter H, Castagnoli L, Celebi R, Cesareni G, Chang H, Chen G, Chen H, Cheng L, Chernomoretz A, Chicco D, Cho K, Cho S, Choi D, Choi J, Choi K, Choi M, De Cock M, Coker E, Cortes-Ciriano I, Cserzo M, Cubuk C, Curtis C, Van Daele D, Dang C, Dijkstra T, Dopazo J, Draghici S, Drosou A, Dumontier M, Ehrhart F, Eid F, ElHefnawi M, Elmarakeby H, van Engelen B, Engin H, de Esch I, Evelo C, Falcao A, Farag S, Fernandez-Lozano C, Fisch K, Flobak A, Fornari C, Foroushani A, Fotso D, Fourches D, Friend S, Frigessi A, Gao F, Gao X, Gerold J, Gestraud P, Ghosh S, Gillberg J, Godoy-Lorite A, Godynyuk L, Godzik A, Goldenberg A, Gomez-Cabrero D, Gonen M, de Graaf C, Gray H, Grechkin M, Guimera R, Guney E, Haibe-Kains B, Han Y, Hase T, He D, He L, Heath L, Hellton K, Helmer-Citterich M, Hidalgo M, Hidru D, Hill S, Hochreiter S, Hong S, Hovig E, Hsueh Y, Hu Z, Huang J, Huang R, Hunyady L, Hwang J, Hwang T, Hwang W, Hwang Y, Isayev O, Walk O, Jack J, Jahandideh S, Ji J, Jo Y, Kamola P, Kanev G, Karacosta L, Karimi M, Kaski S, Kazanov M, Khamis A, Khan S, Kiani N, Kim A, Kim J, Kim K, Kim S, Kim Y, Kirk P, Kitano H, Klambauer G, Knowles D, Ko M, Kohn-Luque A, Kooistra A, Kuenemann M, Kuiper M, Kurz C, Kwon M, van Laarhoven T, Laegreid A, Lederer S, Lee H, Lee J, Lee Y, Leppaho E, Lewis R, Li J, Li L, Liley J, Lim W, Lin C, Liu Y, Lopez Y, Low J, Lysenko A, Machado D, Madhukar N, De Maeyer D, Malpartida A, Mamitsuka H, Marabita F, Marchal K, Marttinen P, Mason D, Mazaheri A, Mehmood A, Mehreen A, Michaut M, Miller R, Mitsopoulos C, Modos D, Van Moerbeke M, Moo K, Motsinger-Reif A, Movva R, Muraru S, Muratov E, Mushthofa M, Nagarajan N, Nakken S, Nath A, Neuvial P, Newton R, Ning Z, De Niz C, Oliva B, Olsen C, Palmeri A, Panesar B, Papadopoulos S, Park J, Park S, Pawitan Y, Peluso D, Pendyala S, Peng J, Perfetto L, Pirro S, Plevritis S, Politi R, Poon H, Porta E, Prellner I, Preuer K, Pujana M, Ramnarine R, Reid J, Reyal F, Richardson S, Ricketts C, Rieswijk L, Rocha M, Rodriguez-Gonzalvez C, Roell K, Rotroff D, de Ruiter J, Rukawa P, Sadacca B, Safikhani Z, Safitri F, Sales-Pardo M, Sauer S, Schlichting M, Seoane J, Serra J, Shang M, Sharma A, Sharma H, Shen Y, Shiga M, Shin M, Shkedy Z, Shopsowitz K, Sinai S, Skola D, Smirnov P, Soerensen I, Soerensen P, Song J, Song S, Soufan O, Spitzmueller A, Steipe B, Suphavilai C, Tamayo S, Tamborero D, Tang J, Tanoli Z, Tarres-Deulofeu M, Tegner J, Thommesen L, Tonekaboni S, Tran H, De Troyer E, Truong A, Tsunoda T, Turu G, Tzeng G, Verbeke L, Videla S, Vis D, Voronkov A, Votis K, Wang A, Wang H, Wang P, Wang S, Wang W, Wang X, Wennerberg K, Wernisch L, Wessels L, van Westen G, Westerman B, White S, Willighagen E, Wurdinger T, Xie L, Xie S, Xu H, Yadav B, Yau C, Yeerna H, Yin J, Yu M, Yun S, Zakharov A, Zamichos A, Zanin M, Zeng L, Zenil H, Zhang F, Zhang P, Zhang W, Zhao H, Zhao L, Zheng W, Zoufir A, Zucknick M, AstraZeneca-Sanger Drug Combinatio
Publikováno v:
Nature Communications, Vol 10, Iss 1, Pp 1-17 (2019)
Nature Communications
Nature Communications, 10, 2674
r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol
instname
Nature Communications, 10, pp. 1-17
Nature Communications 10, 2674 (2019). doi:10.1038/s41467-019-09799-2
Dipòsit Digital de la UB
Universidad de Barcelona
Nature communications, 10 (1
AstraZeneca-Sanger Drug Combination DREAM Consortium 2019, ' Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen ', Nature Communications, vol. 10, no. 1, 2674 . https://doi.org/10.1038/s41467-019-09799-2
Nature Communications, 10:2674. Nature Publishing Group
NATURE COMMUNICATIONS
Nature Communications, 10, 1-17
Nature communications, vol 10, iss 1
Menden, M P, Wang, D, Mason, M J, Szalai, B, Bulusu, K C, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, AstraZeneca-Sanger Drug Combination DREAM Consortium, Jang, I S, Ghazoui, Z, Ahsen, M E, Vogel, R, Neto, E C, Norman, T, Tang, E K Y, Garnett, M J, Veroli, G Y D, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J R & Saez-Rodriguez, J 2019, ' Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen ', Nature Communications, vol. 10, no. 1, 2674 . https://doi.org/10.1038/s41467-019-09799-2
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
r-FISABIO. Repositorio Institucional de Producción Científica
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Nature Communications, 10(1):2674. Nature Publishing Group
Recercat. Dipósit de la Recerca de Catalunya
Nature Communications
Nature Communications, 10, 2674
r-IGTP. Repositorio Institucional de Producción Científica del Instituto de Investigación Germans Trias i Pujol
instname
Nature Communications, 10, pp. 1-17
Nature Communications 10, 2674 (2019). doi:10.1038/s41467-019-09799-2
Dipòsit Digital de la UB
Universidad de Barcelona
Nature communications, 10 (1
AstraZeneca-Sanger Drug Combination DREAM Consortium 2019, ' Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen ', Nature Communications, vol. 10, no. 1, 2674 . https://doi.org/10.1038/s41467-019-09799-2
Nature Communications, 10:2674. Nature Publishing Group
NATURE COMMUNICATIONS
Nature Communications, 10, 1-17
Nature communications, vol 10, iss 1
Menden, M P, Wang, D, Mason, M J, Szalai, B, Bulusu, K C, Guan, Y, Yu, T, Kang, J, Jeon, M, Wolfinger, R, Nguyen, T, Zaslavskiy, M, AstraZeneca-Sanger Drug Combination DREAM Consortium, Jang, I S, Ghazoui, Z, Ahsen, M E, Vogel, R, Neto, E C, Norman, T, Tang, E K Y, Garnett, M J, Veroli, G Y D, Fawell, S, Stolovitzky, G, Guinney, J, Dry, J R & Saez-Rodriguez, J 2019, ' Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen ', Nature Communications, vol. 10, no. 1, 2674 . https://doi.org/10.1038/s41467-019-09799-2
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
r-FISABIO. Repositorio Institucional de Producción Científica
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Nature Communications, 10(1):2674. Nature Publishing Group
Recercat. Dipósit de la Recerca de Catalunya
PubMed: 31209238
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven a
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven a
Autor:
Necci, Marco, Piovesan, Damiano, Hoque Md, Tamjidul, Walsh, Ian, Iqbal, Sumaiya, Vendruscolo, Michele, Sormanni, Pietro, Wang, Chen, Raimondi, Daniele, Sharma, Ronesh, Zhou, Yaoqi, Litfin, Thomas, Galzitskaya Oxana, Valerianovna, Lobanov Michail, Yu, Vranken, Wim, Wallner, Björn, Mirabello, Claudio, Malhis, Nawar, Dosztányi, Zsuzsanna, Erdős, Gábor, Mészáros, Bálint, Gao, Jianzhao, Wang, Kui, Hu, Gang, Wu, Zhonghua, Sharma, Alok, Hanson, Jack, Paliwal, Kuldip, Callebaut, Isabelle, Bitard-Feildel, Tristan, Orlando, Gabriele, Peng, Zhenling, Xu, Jinbo, Wang, Sheng, Jones David, T., Cozzetto, Domenico, Meng, Fanchi, Yan, Jing, Gsponer, Jörg, Cheng, Jianlin, Wu, Tianqi, Kurgan, Lukasz, Promponas Vasilis, J., Tamana, Stella, Marino-Buslje, Cristina, Martínez-Pérez, Elizabeth, Chasapi, Anastasia, Ouzounis, Christos, Dunker A., Keith, Kajava Andrey, V., Leclercq Jeremy, Y., Aykac-Fas, Burcu, Lambrughi, Matteo, Maiani, Emiliano, Papaleo, Elena, Chemes Lucia, Beatriz, Álvarez, Lucía, González-Foutel Nicolás, S., Iglesias, Valentin, Pujols, Jordi, Ventura, Salvador, Palopoli, Nicolás, Benítez Guillermo, Ignacio, Parisi, Gustavo, Bassot, Claudio, Elofsson, Arne, Govindarajan, Sudha, Lamb, John, Salvatore, Marco, Hatos, András, Monzon Alexander, Miguel, Bevilacqua, Martina, Mičetić, Ivan, Minervini, Giovanni, Paladin, Lisanna, Quaglia, Federica, Leonardi, Emanuela, Davey, Norman, Horvath, Tamas, Kovacs Orsolya, Panna, Murvai, Nikoletta, Pancsa, Rita, Schad, Eva, Szabo, Beata, Tantos, Agnes, Macedo-Ribeiro, Sandra, Manso Jose, Antonio, Pereira Pedro José, Barbosa, Davidović, Radoslav, Veljkovic, Nevena, Hajdu-Soltész, Borbála, Pajkos, Mátyás, Szaniszló, Tamás, Guharoy, Mainak, Lazar, Tamas, Macossay-Castillo, Mauricio, Tompa, Peter, Tosatto Silvio C., E., Caid, Predictors, DisProt, Curators
Publikováno v:
Nature Methods
Nature Methods, 2021, 18 (5), pp.472-481. ⟨10.1038/s41592-021-01117-3⟩
Nature Methods, Nature Publishing Group, 2021, ⟨10.1038/s41592-021-01117-3⟩
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Nature Methods, 2021, ⟨10.1038/s41592-021-01117-3⟩
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Nature Methods, Nature Publishing Group, 2021, 18 (5), pp.472-481. ⟨10.1038/s41592-021-01117-3⟩
Nature Methods, 2021, 18 (5), pp.472-481. ⟨10.1038/s41592-021-01117-3⟩
Nature Methods, Nature Publishing Group, 2021, ⟨10.1038/s41592-021-01117-3⟩
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Nature Methods, 2021, ⟨10.1038/s41592-021-01117-3⟩
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Nature Methods, Nature Publishing Group, 2021, 18 (5), pp.472-481. ⟨10.1038/s41592-021-01117-3⟩
Intrinsically disordered proteins, defying the traditional protein structure–function paradigm, are a challenge to study experimentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::038090046479130e4d0ff797fc08550f
https://hal.sorbonne-universite.fr/hal-03329755/document
https://hal.sorbonne-universite.fr/hal-03329755/document
Publikováno v:
Scientific Reports
Scientific Reports, Vol 10, Iss 1, Pp 1-10 (2020)
Scientific Reports, Vol 10, Iss 1, Pp 1-10 (2020)
A major cause of failed drug discovery programs is suboptimal target selection, resulting in the development of drug candidates that are potent inhibitors, but ineffective at treating the disease. In the genomics era, the availability of large biomed
Autor:
Humayan Kabir Rana, Fazlul Huq, Mst. Rashida Akhtar, Pietro Liò, Julian M.W. Quinn, M. Babul Islam, Mohammad Boshir Ahmed, Mohammad Ali Moni
Publikováno v:
Scientific Reports
Scientific Reports, Vol 10, Iss 1, Pp 1-15 (2020)
Scientific Reports, Vol 10, Iss 1, Pp 1-15 (2020)
Welding generates and releases fumes that are hazardous to human health. Welding fumes (WFs) are a complex mix of metallic oxides, fluorides and silicates that can cause or exacerbate health problems in exposed individuals. In particular, WF inhalati