Zobrazeno 1 - 6
of 6
pro vyhledávání: '"60G50, 60J60"'
In the context of matrix displacement decomposition, Bozzo and Di Fiore introduced the so-called $\tau_{\varepsilon,\varphi}$ algebra, a generalization of the more known $\tau$ algebra originally proposed by Bini and Capovani. We study the properties
Externí odkaz:
http://arxiv.org/abs/2008.10554
Autor:
Ethier, S. N., Lee, Jiyeon
Publikováno v:
Fluctuation and Noise Letters 18 (2019) 1950005
The flashing Brownian ratchet is a stochastic process that alternates between two regimes, a one-dimensional Brownian motion and a Brownian ratchet, the latter being a one-dimensional diffusion process that drifts towards a minimum of a periodic asym
Externí odkaz:
http://arxiv.org/abs/1807.06226
Autor:
Ethier, S. N., Lee, Jiyeon
Publikováno v:
Royal Society Open Science 5 (2018) 171685
A Brownian ratchet is a one-dimensional diffusion process that drifts toward a minimum of a periodic asymmetric sawtooth potential. A flashing Brownian ratchet is a process that alternates between two regimes, a one-dimensional Brownian motion and a
Externí odkaz:
http://arxiv.org/abs/1710.05295
Autor:
Kolesnik, Alexander D.
Publikováno v:
Stochastics and Dynamics, 2018, vol. 18, no. 4, 1850020, 24 pp
Consider $n$ independent Goldstein-Kac telegraph processes $X_1(t), \dots ,X_n(t), \; n\ge 2, \; t\ge 0,$ on the real line $\Bbb R$. Each the process $X_k(t), \; k=1,\dots,n,$ describes a stochastic motion at constant finite speed $c_k>0$ of a partic
Externí odkaz:
http://arxiv.org/abs/1503.00871
Publikováno v:
Vietnam Journal of Mathematics, Vol. 32 (SI), 65-75 (2004)
Starting from the model of continuous time random walk, we focus our interest on random walks in which the probability distributions of the waiting times and jumps have fat tails characterized by power laws with exponent between 0 and 1 for the waiti
Externí odkaz:
http://arxiv.org/abs/0801.0142
In the context of matrix displacement decomposition, Bozzo and Di Fiore introduced the so-called $\tau_{\varepsilon,\varphi}$ algebra, a generalization of the more known $\tau$ algebra originally proposed by Bini and Capovani. We study the properties
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5ac3b5736067bbe424ed03d451bcd902
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445316
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445316