Zobrazeno 1 - 10
of 373
pro vyhledávání: '"58d15"'
Autor:
Lenze, David
We describe the isometry group of $L^2(\Omega, M)$ for Riemannian manifolds $M$ of dimension at least two with irreducible universal cover. We establish a rigidity result for the isometries of these spaces: any isometry arises from an automorphism of
Externí odkaz:
http://arxiv.org/abs/2412.13914
For any integer $ p \geq 2 $, we construct a compact Riemannian manifold $ \mathcal{N} $, such that if $ \dim \mathcal{M} > p $, there is a map in the Sobolev space of mappings $ W^{1,p} (\mathcal{M}, \mathcal{N})$ which is not a weak limit of smooth
Externí odkaz:
http://arxiv.org/abs/2412.12889
Autor:
Van Schaftingen, Jean
We prove that a mapping $u \colon \mathcal{M}'\to \mathcal{N}$, where $\mathcal{M}'$ and $ \mathcal{N}$ are compact Riemannian manifolds, is the trace of a Sobolev mapping $U \colon \mathcal{M}' \times [0, 1) \to \mathcal{N}$ if and only if it is on
Externí odkaz:
http://arxiv.org/abs/2412.12713
Autor:
Kristel, Peter, Schmeding, Alexander
The Stacey-Roberts Lemma states that the pushforward of a surjective submersion between finite-dimensional manifolds gives rise to a submersion on infinite-dimensional manifolds of smooth mappings by pushforward. This result is foundational for many
Externí odkaz:
http://arxiv.org/abs/2411.00587
Autor:
Wilkin, Graeme
This paper studies the gradient flow lines for the $L^2$ norm square of the Higgs field defined on the moduli space of semistable rank $2$ Higgs bundles twisted by a line bundle of positive degree over a compact Riemann surface $X$. The main result i
Externí odkaz:
http://arxiv.org/abs/2408.13098
We construct a smooth Banach manifold BV$([a,b], M)$ whose elements are suitably-defined functions $f:[a,b] \rightarrow M$ of bounded variation with values in a smooth Banach manifold $M$ which admits a local addition. If the target manifold is a Ban
Externí odkaz:
http://arxiv.org/abs/2407.05190
Autor:
Dipasquale, Federico Luigi
Triggered by a recent criterion, due to A.~Petrunin [17], to check if a complete, non-compact, Riemannian manifold admits an isometric embedding into a Euclidean space with positive reach, we extend to manifolds with such property the singular extens
Externí odkaz:
http://arxiv.org/abs/2406.05570
Autor:
Das, Ronno, Tosteson, Philip
We consider the space of holomorphic maps from a compact Riemann surface to a projective space blown up at finitely many points. We show that the homology of this mapping space equals that of the space of continuous maps that intersect the exceptiona
Externí odkaz:
http://arxiv.org/abs/2405.12968
Autor:
Haller, Stefan, Vizman, Cornelia
We use cotangent bundles of spaces of smooth embeddings to construct symplectic dual pairs involving the group of volume preserving diffeomorphisms. Via symplectic reduction we obtain descriptions of coadjoint orbits of this group in terms of nonline
Externí odkaz:
http://arxiv.org/abs/2405.10737
Autor:
Van Schaftingen, Jean
The compact Riemannian manifolds $\mathcal{M}$ and $\mathcal{N}$ for which the trace operator from the first-order Sobolev space of mappings $\smash{\dot{W}}^{1, p} (\mathcal{M}, \mathcal{N})$ to the fractional Sobolev-Slobodecki\u{\i} space $\smash{
Externí odkaz:
http://arxiv.org/abs/2403.18738