Zobrazeno 1 - 10
of 17
pro vyhledávání: '"58J50, 58J32"'
Autor:
Provenzano, Luigi, Savo, Alessandro
We study the geometry of the first two eigenvalues of a magnetic Steklov problem on an annulus $\Sigma$ (a compact Riemannian surface with genus zero and two boundary components), the magnetic potential being the harmonic one-form having flux $\nu\in
Externí odkaz:
http://arxiv.org/abs/2310.08203
Autor:
Bérard, Pierre, Webb, David L.
Publikováno v:
Mathematische Zeitschrift (2021)
The main result of this paper is that one cannot hear orientability of a surface with boundary. More precisely, we construct two isospectral flat surfaces with boundary with the same Neumann spectrum, one orientable, the other non-orientable. For thi
Externí odkaz:
http://arxiv.org/abs/2008.12498
In [4], we gave a sharp lower bound for the first eigenvalue of the basic Laplacian acting on basic $1$-forms defined on a compact manifold whose boundary is endowed with a Riemannian flow. In this paper, we extend this result to the case of the firs
Externí odkaz:
http://arxiv.org/abs/1604.02304
In this paper, we give a sharp lower bound for the first eigenvalue of the basic Laplacian acting on basic $1$-forms defined on a compact manifold whose boundary is endowed with a Riemannian flow. The limiting case gives rise to a particular geometry
Externí odkaz:
http://arxiv.org/abs/1512.04683
Autor:
Kalvin, Victor
Publikováno v:
J. Math. Pures Appl. (9) 100, No. 2, 204-219 (2013)
We prove stability and exponential convergence of the Perfectly Matched Layer (PML) method for acoustic scattering on manifolds with axial analytic quasicylindrical ends. These manifolds model long-range geometric perturbations (e.g. bending or stret
Externí odkaz:
http://arxiv.org/abs/1212.5707
Autor:
Raulot, Simon, Savo, Alessandro
Publikováno v:
Journal of Geometric Analysis 22, 3 (2011) 620-640
We derive a Reilly-type formula for differential p-forms on a compact manifold with boundary and apply it to give a sharp lower bound of the spectrum of the Hodge Laplacian acting on differential forms of an embedded hypersurface of a Riemannian mani
Externí odkaz:
http://arxiv.org/abs/1003.0817
Autor:
Soufi, Ahmad El, Ilias, Saïd
Publikováno v:
Illinois Journal of Mathematics 51 (2007) 645--666
For any bounded regular domain $\Omega$ of a real analytic Riemannian manifold $M$, we denote by $\lambda_{k}(\Omega)$ the $k$-th eigenvalue of the Dirichlet Laplacian of $\Omega$. In this paper, we consider $\lambda_k$ and as a functional upon the s
Externí odkaz:
http://arxiv.org/abs/0705.1263
Publikováno v:
Ann. Global Anal. Geom. 31 (2007), no. 4, 345--362.
We prove an extension of a theorem of Barta then we make few geometric applications. We extend Cheng's lower eigenvalue estimates of normal geodesic balls. We generalize Cheng-Li-Yau eigenvalue estimates of minimal submanifolds of the space forms. We
Externí odkaz:
http://arxiv.org/abs/math/0308099
Autor:
Avramidi, Ivan
Publikováno v:
Math.Phys.Anal.Geom. 7 (2004) 9-46
The Zaremba boundary-value problem is a boundary value problem for Laplace-type second-order partial differential operators acting on smooth sections of a vector bundle over a smooth compact Riemannian manifold with smooth boundary but with non-smoot
Externí odkaz:
http://arxiv.org/abs/math-ph/0110020
Autor:
David L. Webb, Pierre Bérard
Publikováno v:
Mathematische Zeitschrift
Mathematische Zeitschrift, Springer, 2021, https://doi.org/10.1007/s00209-021-02758-y
Mathematische Zeitschrift, Springer, 2021, https://doi.org/10.1007/s00209-021-02758-y
The main result of this paper is that one cannot hear orientability of a surface with boundary. More precisely, we construct two isospectral flat surfaces with boundary with the same Neumann spectrum, one orientable, the other non-orientable. For thi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2fba22fda5dd1b9d2cdbad7f61d3b635
https://hal.archives-ouvertes.fr/hal-02937342/file/BW2020-08-26.pdf
https://hal.archives-ouvertes.fr/hal-02937342/file/BW2020-08-26.pdf