Zobrazeno 1 - 10
of 177
pro vyhledávání: '"58F06"'
Autor:
Aghedu, Francesco Cannas, Loi, Andrea
Publikováno v:
Ann Glob Anal Geom: 56 (2019) 583-596
Let $g_S$ be the Simanca metric on the blow-up $\tilde{\mathbb{C}}^2$ of $\mathbb{C}^2$ at the origin. We show that $(\tilde{\mathbb{C}}^2,g_S)$ admits a regular quantization. We use this fact to prove that all coefficients in the Tian-Yau-Zelditch e
Externí odkaz:
http://arxiv.org/abs/1809.04431
Autor:
Aghedu, Francesco Cannas
Publikováno v:
Journal of Geometry and Physics 137 (2019) 35-39
Let $g_{EH}$ be the Eguchi-Hanson metric on the blow-up of $\mathbb{C}^2$ at the origin. In this paper we show that $mg_{EH}$ is not balanced for any positive integer $m$.
Comment: 9 pages, 1 figure, to appear in Journal of Geometry and Physics
Comment: 9 pages, 1 figure, to appear in Journal of Geometry and Physics
Externí odkaz:
http://arxiv.org/abs/1808.06221
We classify radial scalar flat metrics with constant third coeffcient of its TYZ expansion. As a byproduct of our analysis we provide a characterization of Simanca's scalar flat metric.
Comment: 14 pages
Comment: 14 pages
Externí odkaz:
http://arxiv.org/abs/1712.07402
We propose two conjectures about Ricci-flat metrics: Conjecture 1: A Ricci-flat projectively induced metric is flat. Conjecture 2: A Ricci-flat metric on an $n$-dimensional complex manifold such that the $a_{n+1}$ coefficient of the TYZ expansion van
Externí odkaz:
http://arxiv.org/abs/1705.03908
Autor:
Wang, Xiangsheng
In this paper, an equality between the Hochs-Mathai type index and the Atiyah-Patodi-Singer type index is established when the manifold and the group action are both non-compact, which generalizes a result of Ma and Zhang for compact group actions. A
Externí odkaz:
http://arxiv.org/abs/1602.00565
We compute the Szego kernel of the unit circle bundle of a negative line bundle dual to a regular quantum line bundle over a compact Kaehler manifold. As a corollary we provide an infinite family of smoothly bounded strictly pseudoconvex domains on c
Externí odkaz:
http://arxiv.org/abs/1207.6468
Autor:
Loi, Andrea, Zedda, Michela
We construct explicit global symplectic coordinates for the Calabi's inhomogeneous Kaehler-Einstein metric on tubular domains.
Comment: 3 pages
Comment: 3 pages
Externí odkaz:
http://arxiv.org/abs/1105.5519
In this paper we study the set of balanced metrics (in Donaldson's terminology) on a compact complex manifold M which are homothetic to a given balanced one. This question is related to various properties of the Tian-Yau-Zelditch approximation theore
Externí odkaz:
http://arxiv.org/abs/1105.5315
In this paper we investigate the balanced condition (in the sense of Donaldson) and the existence of an Englis expansion for the LeBrun's metrics on $C^2$. Our first result shows that a LeBrun's metric on $C^2$ is never balanced unless it is the flat
Externí odkaz:
http://arxiv.org/abs/1103.6158
Autor:
Mossa, Roberto
Publikováno v:
Int. J. Geom. Methods Mod. Phys. 8 (2011), no. 7, 1433-1438
Let $E\rightarrow M$ be a holomorphic vector bundle over a compact Kaehler manifold $(M, \omega)$ and let $E=E_1\oplus... \oplus E_m\rightarrow M$ be its decomposition into irreducible factors. Suppose that each $E_j$ admits a $\omega$-balanced metri
Externí odkaz:
http://arxiv.org/abs/1101.3078