Zobrazeno 1 - 5
of 5
pro vyhledávání: '"57R57, 53C27"'
Autor:
Nguyen, Minh Lam
We consider a variant of the Seiberg-Witten equations for multiple-spinors. The moduli space of solutions to our generalized Seiberg-Witten equations in the setting of K\"ahler surfaces has a direct relation with ASD connections of holomorphic vector
Externí odkaz:
http://arxiv.org/abs/2301.09693
Autor:
Nguyen, Minh Lam
In this note, we present a proof of Donaldson's Diagonalization Theorem via an abelian gauge-theoretic variant of the Seiberg-Witten equations for multiple spinors. Like the other proof of Donaldson's theorem using the standard Seiberg-Witten theory,
Externí odkaz:
http://arxiv.org/abs/2301.10245
Autor:
Nguyen, Minh Lam
We define a variant of the Seiberg-Witten equations using the Rarita-Schwinger operators for closed simply connected spin smooth 4-manifold X. The moduli space of solutions to the system of non-linear differential equations consist of harmonic 3/2-sp
Externí odkaz:
http://arxiv.org/abs/2206.02907
Autor:
Jabuka, Stanislav
Publikováno v:
Algebr. Geom. Topol. 3 (2003) 155-185
We demonstrate that the operation of taking disjoint unions of J-holomorphic curves (and thus obtaining new J-holomorphic curves) has a Seiberg-Witten counterpart. The main theorem asserts that, given two solutions (A_i, psi_i), i=0,1 of the Seiberg-
Externí odkaz:
http://arxiv.org/abs/math/0110285
Autor:
Stanislav Jabuka
Publikováno v:
Algebr. Geom. Topol. 3, no. 1 (2003), 155-185
We demonstrate that the operation of taking disjoint unions of J-holomorphic curves (and thus obtaining new J-holomorphic curves) has a Seiberg-Witten counterpart. The main theorem asserts that, given two solutions (A_i, psi_i), i=0,1 of the Seiberg-
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::712b9f21e756231a3337e340300f95dc
https://projecteuclid.org/euclid.agt/1513882372
https://projecteuclid.org/euclid.agt/1513882372