Zobrazeno 1 - 4
of 4
pro vyhledávání: '"54C40, 46E30"'
A ring $S(X,\mathcal{A})$ of real valued $\mathcal{A}$-measurable functions defined over a measurable space $(X,\mathcal{A})$ is called a $\chi$-ring if for each $E\in \mathcal{A} $, the characteristic function $\chi_{E}\in S(X,\mathcal{A})$. The set
Externí odkaz:
http://arxiv.org/abs/2408.00505
For a measurable space ($X,\mathcal{A}$), let $\mathcal{M}(X,\mathcal{A})$ be the corresponding ring of all real valued measurable functions and let $\mu$ be a measure on ($X,\mathcal{A}$). In this paper, we generalize the so-called $m_{\mu}$ and $U_
Externí odkaz:
http://arxiv.org/abs/2207.05550
The set of all maximal ideals of the ring $\mathcal{M}(X,\mathcal{A})$ of real valued measurable functions on a measurable space $(X,\mathcal{A})$ equipped with the hull-kernel topology is shown to be homeomorphic to the set $\hat{X}$ of all ultrafil
Externí odkaz:
http://arxiv.org/abs/1806.02860
Publikováno v:
Journal of Algebra and Its Applications. 19:2050038
The set of all maximal ideals of the ring $\mathcal{M}(X,\mathcal{A})$ of real valued measurable functions on a measurable space $(X,\mathcal{A})$ equipped with the hull-kernel topology is shown to be homeomorphic to the set $\hat{X}$ of all ultrafil