Zobrazeno 1 - 9
of 9
pro vyhledávání: '"53D17, 70H06"'
We present two involutivity theorems in the context of Poisson quasi-Nijenhuis manifolds. The second one stems from recursion relations that generalize the so called Lenard-Magri relations on a bi-Hamiltonian manifold. We apply these results to the c
Externí odkaz:
http://arxiv.org/abs/2410.08671
Publikováno v:
Geometric Methods in Physics XXXX, Workshop, Bia{\l}owie\.za, Poland, Springer, 2023
The restricted Siegel disc is a homogeneous space related to the connected component $T_0(1)$ of the Universal Teichm\"uller space via the period mapping. In this paper we show that it is a coadjoint orbit of the universal central extension of the re
Externí odkaz:
http://arxiv.org/abs/2405.13533
In this paper we construct a family of integrable reductions of the dressing chain, described in its Lotka-Volterra form. For each $k,n\in\mathbb N$ with $n\geqslant 2k+1$ we obtain a Lotka-Volterra system $\hbox{LV}_b(n,k)$ on $\mathbb R^n$ which is
Externí odkaz:
http://arxiv.org/abs/1903.02876
Autor:
Bartocci, Claudio, Tacchella, Alberto
We introduce a notion of noncommutative Poisson-Nijenhuis structure on the path algebra of a quiver. In particular, we focus on the case when the Poisson bracket arises from a noncommutative symplectic form. The formalism is then applied to the study
Externí odkaz:
http://arxiv.org/abs/1604.02012
Autor:
Sansonetto, Nicola, Sepe, Daniele
Motivated by the recent connection between nonholonomic integrable systems and twisted Poisson manifolds made in \cite{balseiro_garcia_naranjo}, this paper investigates the global theory of integrable Hamiltonian systems on almost symplectic manifold
Externí odkaz:
http://arxiv.org/abs/1207.3655
In this paper we construct a family of integrable reductions of the dressing chain, described in its Lotka-Volterra form. For each $k,n\in\mathbb N$ with $n\geqslant 2k+1$ we obtain a Lotka-Volterra system $\hbox{LV}_b(n,k)$ on $\mathbb R^n$ which is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c1af6a10b058b4fe87e931cac39c242d
Autor:
Claudio Bartocci, Alberto Tacchella
We introduce a notion of noncommutative Poisson-Nijenhuis structure on the path algebra of a quiver. In particular, we focus on the case when the Poisson bracket arises from a noncommutative symplectic form. The formalism is then applied to the study
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e12a089f2646a229b7c11c1e5df8089
http://hdl.handle.net/11567/858403
http://hdl.handle.net/11567/858403
Autor:
Daniele Sepe, Nicola Sansonetto
Motivated by the recent connection between nonholonomic integrable systems and twisted Poisson manifolds made in \cite{balseiro_garcia_naranjo}, this paper investigates the global theory of integrable Hamiltonian systems on almost symplectic manifold
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f7c7e21f8870ec597d74d0fb41fd3e68
http://hdl.handle.net/11562/1009295
http://hdl.handle.net/11562/1009295
Autor:
Robert Brouzet, Hassan Boualem
Publikováno v:
Journal of Geometry and Physics
Journal of Geometry and Physics, Elsevier, 2006, 56 (8), pp.1370-1386. ⟨10.1016/j.geomphys.2005.07.006⟩
Journal of Geometry and Physics, Elsevier, 2006, 56 (8), pp.1370-1386. ⟨10.1016/j.geomphys.2005.07.006⟩
In this paper, after some recalls about Poisson cohomology, we first study what the general method is in order to obtain a bi-Hamiltonian formulation of a given Hamiltonian system by means of a deformation. Then we show that the bi-Hamiltonian formul
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f3764542f6695f3414b17ee55da1e72
https://hal.archives-ouvertes.fr/hal-00800873
https://hal.archives-ouvertes.fr/hal-00800873