Zobrazeno 1 - 7
of 7
pro vyhledávání: '"53C27, 15A66"'
Autor:
Artacho, Diego, Semmelmann, Uwe
In this note, we characterise the existence of non-trivial invariant spinors on maximal flag manifolds associated to complex simple Lie algebras. This characterisation is based on the combinatorial properties of their set of positive roots.
Comm
Comm
Externí odkaz:
http://arxiv.org/abs/2407.08493
Autor:
Artacho, Diego, Hofmann, Jordan
In this paper, we adapt the characterisation of the spin representation via exterior forms to the generalised spin$^r$ context. We find new invariant spin$^r$ spinors on the projective spaces $\mathbb{CP}^n$, $\mathbb{HP}^n$, and the Cayley plane $\m
Externí odkaz:
http://arxiv.org/abs/2406.18337
Autor:
Lischewski, Andree
We study the twistor equation on pseudo-Riemannian $Spin^c-$manifolds whose solutions we call charged conformal Killing spinors (CCKS). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears
Externí odkaz:
http://arxiv.org/abs/1403.2311
Autor:
Dabrowski, Ludwik, Dossena, Giacomo
Publikováno v:
Class. Quantum Grav. 30 015006 (2013)
The issue of general covariance of spinors and related objects is reconsidered. Given an oriented manifold $M$, to each spin structure $\sigma$ and Riemannian metric $g$ there is associated a space $S_{\sigma, g}$ of spinor fields on $M$ and a Hilber
Externí odkaz:
http://arxiv.org/abs/1209.2021
Autor:
Andree Lischewski
We study the twistor equation on pseudo-Riemannian $Spin^c-$manifolds whose solutions we call charged conformal Killing spinors (CCKS). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::28c1d41cc4a213b1804c29a07ce02a1a
http://arxiv.org/abs/1403.2311
http://arxiv.org/abs/1403.2311
Autor:
Giacomo Dossena, Ludwik Dąbrowski
The issue of general covariance of spinors and related objects is reconsidered. Given an oriented manifold $M$, to each spin structure $\sigma$ and Riemannian metric $g$ there is associated a space $S_{\sigma, g}$ of spinor fields on $M$ and a Hilber
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f2a4277ef92983c27c4d40245447fa6a
http://hdl.handle.net/20.500.11767/11370
http://hdl.handle.net/20.500.11767/11370
Autor:
Anglès, Pierre
Publikováno v:
Birkhaüser, XXVIII-283 p., 2008, Progress in Mathematical Physics, vol. 50, ISBN 978-0-8176-3512-1. ⟨10.1007/978-0-8176-4643-1⟩
International audience
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::0b8bf8462faeb8dbdb31bd035e97d0fd
https://hal.archives-ouvertes.fr/hal-00634491
https://hal.archives-ouvertes.fr/hal-00634491