Zobrazeno 1 - 9
of 9
pro vyhledávání: '"53C20, 53A30"'
The aim of this article is to investigate the presence of a conformal vector $\xi$ with conformal factor $\rho$ on a compact Riemannian manifold $M$ with or without boundary $\partial M$. We firstly prove that a compact Riemannian manifold $(M^n, g)\
Externí odkaz:
http://arxiv.org/abs/2412.02910
Let $(M^n,g)$ be an $n$-dimensional compact connected Riemannian manifold with boundary. In this article, we study the effects of the presence of a nontrivial conformal vector field on $(M^n,g)$. We used the wekk-known de-Rham Laplace operator and a
Externí odkaz:
http://arxiv.org/abs/2112.11220
Autor:
Evangelista, Israel, Viana, Emanuel
Let $(M^n,g)$ be an $n$-dimensional compact connected Riemannian manifold with smooth boundary. We show that the presence of a nontrivial conformal gradient vector field on $M$, with an appropriate control on the Ricci curvature makes $M$ to be isome
Externí odkaz:
http://arxiv.org/abs/1805.03166
Autor:
Müller, Olaf, Nardmann, Marc
Publikováno v:
Mathematische Annalen 363 (2015), 143-174
We show that on every manifold, every conformal class of semi-Riemannian metrics contains a metric $g$ such that each $k$-th-order covariant derivative of the Riemann tensor of $g$ has bounded absolute value $a_k$. This result is new also in the Riem
Externí odkaz:
http://arxiv.org/abs/1303.5957
In this note, we prove two Kazdan-Warner type identities involving $v^{(2k)}$, the renormalized volume coefficients of a Riemannian manifold $(M^n,g)$, and $G_{2r}$, the so-called Gauss-Bonnet curvature, and a conformal Killing vector field on $(M^n,
Externí odkaz:
http://arxiv.org/abs/0911.4649
Publikováno v:
Results in Mathematics. 77
Let $(M^n,g)$ be an $n$-dimensional compact connected Riemannian manifold with boundary. In this article, we study the effects of the presence of a nontrivial conformal vector field on $(M^n,g)$. We used the wekk-known de-Rham Laplace operator and a
Autor:
Israel Evangelista, Emanuel Viana
Let $(M^n,g)$ be an $n$-dimensional compact connected Riemannian manifold with smooth boundary. We show that the presence of a nontrivial conformal gradient vector field on $M$, with an appropriate control on the Ricci curvature makes $M$ to be isome
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e206aba73cbfe984e93b0329484900c
http://arxiv.org/abs/1805.03166
http://arxiv.org/abs/1805.03166
Autor:
Marc Nardmann, Olaf Müller
Publikováno v:
Mathematische Annalen. 363:143-174
We show that on every manifold, every conformal class of semi-Riemannian metrics contains a metric $g$ such that each $k$-th-order covariant derivative of the Riemann tensor of $g$ has bounded absolute value $a_k$. This result is new also in the Riem
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.