Zobrazeno 1 - 10
of 278
pro vyhledávání: '"4c05"'
Autor:
Ramkumar, Ritvik
Let $H_{a,b}^n$ denote the component of the Hilbert scheme whose general point parameterizes an $a$-plane union a $b$-plane meeting transversely in $\mathbf{P}^n$. We describe the effective and nef cones of $H_{a,b}^n$ and determine when the componen
Externí odkaz:
http://arxiv.org/abs/2006.06211
Autor:
Roy Bishwambhar
Publikováno v:
Acta Universitatis Sapientiae: Mathematica, Vol 12, Iss 1, Pp 212-221 (2020)
In this paper a new class of sets termed as ω∗μ-open sets has been introduced and studied. Using these concept, a unified theory for decomposition of (μ, λ)-continuity has been given.
Externí odkaz:
https://doaj.org/article/e5afbf14b68b44a9878a39ebb8f834c1
Autor:
Oliveira, Regilene D. S., Zhao, Yulin
Denote by $H_{pqm}$ the space of all planar $(p,q)$-quasihomogeneous vector fields of degree $m$ endowed with the coefficient topology. In this paper we characterize the set $\Omega_{pqm}$ of the vector fields in $H_{pqm}$ that are structurally stabl
Externí odkaz:
http://arxiv.org/abs/1110.4243
Autor:
Simon, Barry
Mhaskar-Saff found a kind of universal behavior for the bulk structure of the zeros of orthogonal polynomials for large $n$. Motivated by two plots, we look at the finer structure for the case of random Verblunsky coefficients and for what we call th
Externí odkaz:
http://arxiv.org/abs/math/0411391
Autor:
Simon, Barry
We present a complete theory of the asymptotics of the zeros of OPUC with Verblunsky coefficients $\alpha_n = \sum_{\ell=1}^L C_\ell b_\ell^n + O((b\Delta)^n)$ where $\Delta <1$ and $\abs{b_\ell} = b<1$.
Comment: Keywords: orthogonal polynomials
Comment: Keywords: orthogonal polynomials
Externí odkaz:
http://arxiv.org/abs/math/0411392
Autor:
Bishwambhar Roy
Publikováno v:
Acta Universitatis Sapientiae: Mathematica, Vol 12, Iss 1, Pp 212-221 (2020)
In this paper a new class of sets termed as ω ∗ μ-open sets has been introduced and studied. Using these concept, a unified theory for decomposition of (μ, λ)-continuity has been given.
Autor:
Simon, Barry
Mhaskar-Saff found a kind of universal behavior for the bulk structure of the zeros of orthogonal polynomials for large $n$. Motivated by two plots, we look at the finer structure for the case of random Verblunsky coefficients and for what we call th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b8cd340eceaa0305dbd984a9b35b7c79
https://resolver.caltech.edu/CaltechAUTHORS:SIMetna06
https://resolver.caltech.edu/CaltechAUTHORS:SIMetna06
Autor:
Barry Simon
We present a complete theory of the asymptotics of the zeros of OPUC with Verblunsky coefficients $\alpha_n = \sum_{\ell=1}^L C_\ell b_\ell^n + O((b\Delta)^n)$ where $\Delta
Comment: Keywords: orthogonal polynomials, Jacobi matrices, CMV matrice
Comment: Keywords: orthogonal polynomials, Jacobi matrices, CMV matrice
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7618021fc7e934f293650a6ad1a92343
http://arxiv.org/abs/math/0411392
http://arxiv.org/abs/math/0411392
Autor:
Olasunkanmi, N. K.1 nurudeen.olasunkanmi@kwasu.edu.ng, Ogundele, D. T.2, Olayemi, V. T.2, Yahya, W. A.1, Olasunkanmi, A. R.3, Yusuf, Z. O.1, Aderoju, S. A.4
Publikováno v:
Journal of Nigerian Society of Physical Sciences. May2024, Vol. 6 Issue 2, p1-12. 12p.
Autor:
Fedeli, Alessandro1 afedeli@univaq.it, Le Donne, Attilio2 ledonne@mat.uniroma1.it
Publikováno v:
Topology & Its Applications. Feb2016, Vol. 199, p49-54. 6p.