Zobrazeno 1 - 10
of 278
pro vyhledávání: '"46G25"'
We investigate projection constants for spaces of bihomogeneous harmonic and bihomogeneous polynomials on the unit sphere in finite-dimensional complex Hilbert spaces. Using averaging techniques, we demonstrate that the minimal norm projection aligns
Externí odkaz:
http://arxiv.org/abs/2411.12579
Autor:
Aires, Mikaela, Botelho, Geraldo
Let $X$ be a (real or complex) infinite dimensional linear space. We establish conditions on a homogeneous polynomial $P$ on $X$ so that, if $W$ is any finite dimensional subspace of $X$ on which $P$ vanishes, then $P$ vanishes on an infinite dimensi
Externí odkaz:
http://arxiv.org/abs/2406.14241
We investigate projection constants within classes of multivariate polynomials over finite-dimensional real Hilbert spaces. Specifically, we consider the projection constant for spaces of spherical harmonics and spaces of homogeneous polynomials as w
Externí odkaz:
http://arxiv.org/abs/2405.12123
We introduce and explore the concept of positive ideals for both linear and multilinear operators between Banach lattices. This paper delineates the fundamental principles of these new classes and provides techniques for constructing positive multi-i
Externí odkaz:
http://arxiv.org/abs/2402.00618
Autor:
Botelho, Geraldo, Santiago, Ariel S.
Let $X_1, \ldots, X_n,Y$ be classes of Banach spaces-valued sequences. An $n$-linear operator $A$ between Banach spaces belongs to the ideal of $(X_1, \ldots, X_n;Y)$-summing multilinear operators if $(A(x_j^1, \ldots, x_j^n))_{j=1}^\infty$ belongs t
Externí odkaz:
http://arxiv.org/abs/2306.11860
Given a frequency sequence $\omega=(\omega_n)$ and a finite subset $J \subset \mathbb{N}$, we study the space $\mathcal{H}_{\infty}^{J}(\omega)$ of all Dirichlet polynomials $D(s) := \sum_{n \in J} a_n e^{-\omega_n s}, \, s \in \mathbb{C}$. The main
Externí odkaz:
http://arxiv.org/abs/2302.00231
We study the projection constant of the space of operators on $n$-dimensional Hilbert spaces, with the trace norm, $\mathcal S_1(n)$. We show an integral formula for the projection constant of $\mathcal S_1(n)$; namely $ \boldsymbol{\lambda}\big(\mat
Externí odkaz:
http://arxiv.org/abs/2302.00218
In this paper, we study the (uniform) strong subdifferentiability of the norms of the Banach spaces $\mathcal{P}(^N X, Y^*)$, $X \hat{\otimes}_\pi \cdots \hat{\otimes}_\pi X$ and $\hat{\otimes}_{\pi_s,N} X$. Among other results, we characterize when
Externí odkaz:
http://arxiv.org/abs/2209.01767
Autor:
Deb, R., Das, A. K.
In recent years several classes of structured matrices are extended to classes of tensors in the context of tensor complementarity problem. The tensor complementarity problem is a class of nonlinear complementarity problem where the involved function
Externí odkaz:
http://arxiv.org/abs/2209.00387
The general problem we address is to develop new methods in the study of projection constants of Banach spaces of multivariate polynomials. The relative projection constant $\boldsymbol{\lambda}(X,Y)$ of a subspace $X$ of a Banach $Y$ is the smallest
Externí odkaz:
http://arxiv.org/abs/2208.06467