Zobrazeno 1 - 10
of 12
pro vyhledávání: '"46G05, 46T20"'
Autor:
Johanis, Michal, Zajíček, Luděk
Our note is a complement to recent articles \cite{JS1} (2011) and \cite{JS2} (2013) by M. Jim\'enez-Sevilla and L. S\'anchez-Gonz\'alez which generalise (the basic statement of) the classical Whitney extension theorem for $C^1$-smooth real functions
Externí odkaz:
http://arxiv.org/abs/2403.14317
Autor:
Pinamonti, Andrea, Speight, Gareth
We show that every model filiform group $\mathbb{E}_{n}$ contains a measure zero set $N$ such that every Lipschitz map $f\colon \mathbb{E}_{n}\to \mathbb{R}$ is differentiable at some point of $N$. Model filiform groups are a class of Carnot groups w
Externí odkaz:
http://arxiv.org/abs/1711.11433
Publikováno v:
Journal de Math\'ematiques Pures et Appliqu\'ees 121 (2019), 83-112
We show that every Carnot group G of step 2 admits a Hausdorff dimension one `universal differentiability set' N such that every real-valued Lipschitz map on G is Pansu differentiable at some point of N. This relies on the fact that existence of a ma
Externí odkaz:
http://arxiv.org/abs/1705.05871
Autor:
Pinamonti, Andrea, Speight, Gareth
We show that the Heisenberg group $\mathbb{H}^n$ contains a measure zero set $N$ such that every Lipschitz function $f\colon \mathbb{H}^n \to \mathbb{R}$ is Pansu differentiable at a point of $N$. The proof adapts the construction of small 'universal
Externí odkaz:
http://arxiv.org/abs/1505.07986
Autor:
Preiss, David, Speight, Gareth
We show that if n>1 then there exists a Lebesgue null set in R^n containing a point of differentiability of each Lipschitz function mapping from R^n to R^(n-1); in combination with the work of others, this completes the investigation of when the clas
Externí odkaz:
http://arxiv.org/abs/1304.6916
Autor:
Pang, C. H. Jeffrey
We propose a new concept of generalized differentiation of set-valued maps that captures the first order information. This concept encompasses the standard notions of Frechet differentiability, strict differentiability, calmness and Lipschitz continu
Externí odkaz:
http://arxiv.org/abs/0907.5439
Autor:
Doré, Michael, Maleva, Olga
Publikováno v:
Mathematische Annalen, Online First, 26 November 2010
We prove that in a Euclidean space of dimension at least two, there exists a compact set of Lebesgue measure zero such that any real-valued Lipschitz function defined on the space is differentiable at some point in the set. Such a set is constructed
Externí odkaz:
http://arxiv.org/abs/0804.4576
Autor:
Gareth Speight, Andrea Pinamonti
Publikováno v:
Israel Journal of Mathematics. 240:445-502
We show that every model filiform group $\mathbb{E}_{n}$ contains a measure zero set $N$ such that every Lipschitz map $f\colon \mathbb{E}_{n}\to \mathbb{R}$ is differentiable at some point of $N$. Model filiform groups are a class of Carnot groups w
Publikováno v:
Journal de Mathématiques Pures et Appliquées
We show that every Carnot group G of step 2 admits a Hausdorff dimension one `universal differentiability set' N such that every real-valued Lipschitz map on G is Pansu differentiable at some point of N. This relies on the fact that existence of a ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8147c2622e31ac2a387afe3c1cad1a6a
https://www.sciencedirect.com/science/article/pii/S0021782417301824?via=ihub
https://www.sciencedirect.com/science/article/pii/S0021782417301824?via=ihub
Autor:
Andrea Pinamonti, Gareth Speight
We show that the Heisenberg group $\mathbb{H}^n$ contains a measure zero set $N$ such that every Lipschitz function $f\colon \mathbb{H}^n \to \mathbb{R}$ is Pansu differentiable at a point of $N$. The proof adapts the construction of small 'universal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c57689ebdc6194c3cf8ff7692e8a9676
http://arxiv.org/abs/1505.07986
http://arxiv.org/abs/1505.07986