Zobrazeno 1 - 7
of 7
pro vyhledávání: '"46E35, 31B15"'
Autor:
Braides, Andrea, Maso, Gianni Dal
We prove an integral-representation result for limits of non-local quadratic forms on $H^1_0(\Omega)$, with $\Omega$ a bounded open subset of $\mathbb R^d$, extending the representation on $C^\infty_c(\Omega)$ given by the Beurling-Deny formula in th
Externí odkaz:
http://arxiv.org/abs/2305.04679
We study fine differentiability properties of functions in Sobolev spaces. We prove that the difference quotient of $f\in W^{1}_{p}(\mathbb R^n)$ converges to the formal differential of this function in the $W^{1}_{p,\loc}$-topology $\cp_p$-a.~e. und
Externí odkaz:
http://arxiv.org/abs/2207.08738
Autor:
Hurri-Syrjänen, Ritva, Joensuu, Jani
We prove capacitary strong type inequalities for functions belonging to Orlicz-Sobolev spaces. As an application we consider capacitary averages and their limits.
Externí odkaz:
http://arxiv.org/abs/1307.7955
Autor:
Kolyada, V. I.
The paper is devoted to the study of limiting behaviour of Besov capacities $\capa (E;B_{p,q}^\a) (0<\a<1)$ of sets in $\R^n$ as $\a\to 1$ or $\a\to 0.$ Namely, let $E\subset \R^n$ and $$J_{p,q}(\a, E)=[\a(1-\a)q]^{p/q}\capa(E;B_{p,q}^\a).$$ It is pr
Externí odkaz:
http://arxiv.org/abs/1208.1938
Autor:
Braides, Andrea, Maso, Gianni Dal
We prove an integral-representation result for limits of non-local quadratic forms on $H^1_0(Ω)$, with $Ω$ a bounded open subset of $\mathbb R^d$, extending the representation on $C^\infty_c(Ω)$ given by the Beurling-Deny formula in the theory of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::774f3a255c15fa4034447b1c3219cda9
Autor:
Hurri-Syrj��nen, Ritva, Joensuu, Jani
We prove capacitary strong type inequalities for functions belonging to Orlicz-Sobolev spaces. As an application we consider capacitary averages and their limits.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0ff4795a149aba2d6b56964ff839c4e8
http://arxiv.org/abs/1307.7955
http://arxiv.org/abs/1307.7955
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.