Zobrazeno 1 - 3
of 3
pro vyhledávání: '"46B20, 28B20"'
Autor:
Slobodianiuk, Denys
Let $X$ be a Banach space and $F: [0, 1] \rightarrow 2^{X} \setminus \{ \varnothing \}$ be a bounded multifunction. We study properties of the set $I(F)$ of limits in Hausdorff distance of Riemann integral sums of $F$. The main results are: (1) $I(F)
Externí odkaz:
http://arxiv.org/abs/2308.03178
Publikováno v:
Journal of Mathematical Analysis and Applications, Available online 8 September 2021, 125652
For a Banach space $X$ we demonstrate the equivalence of the following two properties: (1) $X$ is B-convex (that is, possesses a nontrivial infratype), and (2) if ${F: [0,1] \to 2^{X} \setminus \{\varnothing\}}$ is a {multifunction}, $\mathrm{conv} F
Externí odkaz:
http://arxiv.org/abs/2105.10681
Publikováno v:
Journal of Mathematical Analysis and Applications. 505:125652
For a Banach space X we demonstrate the equivalence of the following two properties: (1) X is B-convex (that is, possesses a nontrivial infratype), and (2) if F : [ 0 , 1 ] → 2 X ∖ { ∅ } is a multifunction with bounded values, convF denotes the